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W. Beiglböck, Heidelberg, Germany
W. Domcke, Garching, Germany
B.-G. Englert, Singapore
U. Frisch, Nice, France
P. Hänggi, Augsburg, Germany
G. Hasinger, Garching, Germany
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Preface

The study of clusters of galaxies has advanced tremendously in recent years
due to the advent of large or dedicated ground-based telescopes, the increas-
ingly sensitive space observatories and the significant advances in numerical
astrophysics and cosmology. The current generations of large spectroscopic
and wide-field imaging surveys and ongoing multi-wavelength studies are
making major breakthroughs in our understanding of galaxy aggregation and
transformation processes in different environments, on the properties of the
tenuous ICM gas, on the starburst activity and on revealing environmental
effects on galaxy formation and evolution.

We therefore felt that it was timely to update previous reviews on the
physical nature of clusters of galaxies, their evolution, their galaxy, dark-
matter and gas content and the cosmological constraints that they can provide.

This book is the selection of invited reviews, presented during the 2005
Guillermo Haro Advanced School (GH2005) on “A Panchromatic view of
Clusters of Galaxies and the LSS”, organized by the Instituto Nacional de
Astrof́ısica, Óptica y Electrónica in Tonantzintla, México. As the title of the
school indicates, a variety of cluster physics themes were discussed: the physics
of the ICM gas, the internal cluster dynamics, the detection of clusters using
different observational techniques, the great advances in analytical or numeri-
cal modeling of clusters, weak and strong lensing effects, the large-scale struc-
ture as traced by clusters, the cosmological significance of clusters as well as
the formation and evolution of clusters and the cosmic-web within the new
cosmological paradigm.

The GH2005 advanced summer-school provided the opportunity to dissem-
inate the new results and methodologies of cluster research to approximately
a hundred senior graduate students and post-docs from all over the world.

The organizers of the school are deeply indebted to the distinguished lec-
turers for their excellent presentations and contributions to this book, the
students of the school for their interest and inquisitive attitude which helped
deepen the discussions, the INAOE which hosted this summer school and
the Mexican government which through the Consejo Nacional de Ciencia y
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Technoloǵıa dealt with the financial and logistic aspects of our endeavour.
We would also like to thank the The American Astronomical Society and The
Harlow Shapley Visiting Lectureship Program for supporting one of our lec-
turers (Christine Jones) and last but not least, the Talavera de La Luz for
allowing us to use their artwork for our poster.

Manolis Plionis
Omar López-Cruz

David Hughes
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Gas Dynamics in Clusters of Galaxies

C. L. Sarazin

Department of Astronomy, University of Virginia, P. O. Box 3818, Charlottesville,
VA 22903-0818, USA
sarazin@virginia.edu

1 Introduction

One of the more surprising results from X-ray astronomy is that the great
volumes of space between galaxies in clusters of galaxies are not empty, as
they appear in optical images. Instead, they are filled with a diffuse, hot
plasma, with typical temperatures of T ∼ 107−108 K. At this temperature,
the sound speed in the gas is comparable to the orbit velocities of the galaxies
in the cluster, which is consistent with the gas being in hydrostatic equilib-
rium with the same gravitational potential as binds the galaxies. This intr-
acluster medium (ICM) is highly rarefied, with electron number densities of
ne ∼ 10−4−10−2 cm−3. At least on large scales, the gas is stably stratified,
with the density decreasing with increasing radius r. The gas extends out to
distances of r ∼> Mpc from the cluster center. The total mass of hot gas is
typically Mgas ∼ 1014 M�; this mass exceeds the total mass of all the galaxies
in a typical rich clusters, although even more of the mass is in the form of
unseen “dark matter.”

At temperatures of 106−108 K, the dominant radiation mechanism of a
plasma is X-ray emission. As a result, clusters of galaxies are generally very
luminous X-ray emitters, with luminosities of LX ∼ 1043 − 1045 ergs s−1.
Clusters are second only to quasars as the most luminous X-ray sources in the
Universe, and are the most luminous extended sources. While X-ray emission
is the primary observational diagnostic for the intracluster medium, the ICM
has a number of other important physical effects. It confines and distorts radio
galaxies within the cluster. The cosmic ray and magnetic field components of
the intracluster medium can also produce diffuse radio emission (see Feretti &
Giovannini this volume). The ICM can strip interstellar gas from galaxies as
they move through the cluster. Intracluster gas cools at the centers of many
clusters, producing lower temperature gas. If the ICM contains dust, the dust
will be strongly heated by the plasma, and may emit strongly in the infrared.
The ICM also has a number of opacity effects; for example, it scatters and
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2 C. L. Sarazin

heats the cosmic background radiation which passes through it. The magnetic
field in the ICM leads to Faraday rotation and depolarization (Sect. 4.2).

In this chapter, I will review the physical state and X-ray emission pro-
cesses of the ICM (Sect. 2 and 3). The ICM is shown to act as a fluid in
Sect. 4. In Sect. 5, the transport properties of the gas, particularly thermal
conduction, are discussed. The hydrodynamical equations for the ICM are
given in Sect. 6. Models for the distribution of the gas, and the use of the gas
to determine the total mass distributions of clusters are described in Sect. 7
and Sect. 8. The heating and cooling processes in the ICM are discussed in
Sect. 9. Much of the heating is due to the hierarchical formation of clusters,
and cluster mergers are introduced in Sect. 10. The thermal effects of merger
shocks are discussed in Sect. 11. In Sect. 12, the effects of mergers on cluster
cooling cores and the phenomena of cold fronts are described.

As much as possible, comparisons to observations in this chapter assume
the standard WMAP cosmology [2], with a Hubble constant of H0 = 71 km
s−1 Mpc−1, a ratio of the mass density to the critical density of Ωm = 0.27,
and the ratio of the dark energy density to the critical density of ΩΛ = 0.73.

2 Physical State of the Intracluster Gas

2.1 Local Thermal State

At the very high temperatures of the intracluster gas, the gas is very highly
ionized, but not completely so for the heavy elements. Thus, to describe the
local thermal state of the gas, we need to specify three things. First, there are
the motions of free particles (electrons and ions), or the kinetic state of the
gas. Then, we need to give the ratios of electrons which are free to those which
are bound to ions, or the ionization state of the gas. Finally, for the bound
electrons, we need to which energy levels they occupy; this is the excitation
state of the gas.

Kinetic Equilibrium

If Coulomb collisions are sufficiently rapid, the free particles in the gas (free
electron, free proton, and ions) will be brought into kinetic equilibrium and
develop a Maxwellian distribution. The time scale for a particle of mass m1

and charge Z1e to collide with field particles of mass m2 and charge Z2e with a
number density of n2 in a Maxwellian distribution at a temperature T is [43]:

teq(1, 2) =
3m1

√
2π (kT )3/2

8π
√
m2n2Z2

1Z
2
2e

4 ln Λ
. (1)

Here, ln Λ ≡ ln(bmax/bmin) ≈ 40 is the Coulomb logarithm, and bmin and bmax

are the minimum and maximum impact parameters for Coulomb collisions
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in the gas. The Coulomb logarithm has a weak (logarithmic) dependence
on density and temperature, but is nearly constant under ICM conditions.
Coulomb collisions between electrons will bring the electrons into equilibration
(an isotropic Maxwellian velocity distribution) on a time scale of roughly

teq(e, e) ≈ 3 × 105 yr
(

T

108 K

)3/2 ( ne

10−3 cm−3

)−1

yr . (2)

The time scale for protons to equilibrate among themselves is teq(p, p) ≈
(mp/me)1/2 teq(e, e), or roughly 43 times longer than the value in (2). Follow-
ing this time, the protons and ions would each have Maxwellian distributions,
but generally at different temperatures. The time scale for protons to col-
lide with electrons and exchange energy is teq(p, e) ≈ (mp/me)teq(e, e), or
roughly 1870 times the value in (2). The time scale for the electrons and pro-
tons to come into equipartition (equal temperatures) is roughly one half of
teq(p, e) [43].

Under typical conditions in the intracluster gas, these time scales are
teq(e, e) ∼ 105 yr, teq(p, p) ∼ 4 × 106 yr, and teq(p, e) ∼ 2 × 108 yr. Most
clusters have existed for ∼> 109 yr, so one would expect the gas to generally be
in kinetic equilibrium, with the distributions of free particles being isotropic
Maxwellians. Moreover, the electrons and ions should generally be in equipar-
tition, with a common kinetic temperature T = Te = Tp. Possible exceptions
might be the outermost regions of clusters (where the gas density is low), or
regions where the gas properties have changed rapidly, such as shocks [26].

Collisional Ionization Equilibrium

The main ionization process in the intracluster gas is collisional ionization,

e− + X+i → e− + e− + X+i+1 . (3)

The main recombination processes are radiative and dielectronic recombina-
tion,

e− + X+i+1 → X+i + photon(s) . (4)

Here, X+i represents some element X which has been ionized i times. Note
that neither radiative nor dielectronic recombination (4) are the inverse of
collisional ionization (3), which implies that the ionization state in the intra-
cluster gas is not that in thermodynamic equilibrium (the Saha equation).

Let C(X i, T ) be the rate coefficient for collisional ionization out of the ion
X i (3), while α(X i, T ) is the rate coefficient for recombination to the ion X i

(4). If the gas starts in a lower ionization state than in equilibrium, it will be
ionized up towards equilibrium on a time scale of roughly:

tion ≈ [C(X i, T )ne

]−1 ≈ 3 × 108

[
C(X i, T )

10−13 cm3 s−1

]−1 ( ne

10−3 cm−3

)−1

yr .

(5)



4 C. L. Sarazin

In general, the collisional ionization rates are high enough that one would
expect he ICM to generally be in collisional ionization equilibrium. Again,
possible exceptions might be the outermost regions of clusters (where the gas
density is low), or regions where the gas properties have changed rapidly, such
as shocks.

In collisional ionization equilibrium, the rates of collisional ionization and
radiative and dielectronic recombination balance, which implies that
[
C(X i, Tg) + α(X i−1, Tg)

]
n(X i) = C(X i−1, Tg)n(X i−1)+α(X i, Tg)n(X i+1) .

(6)
Here, n(X i) is the number density of the X i ion. Note that, unlike thermo-
dynamic equilibrium (Saha equilibrium), the state of ionization in collisional
ionization equilibrium is independent of density, and only depends on the
electron kinetic temperature T . Generally, each ionization fraction reaches a
maximum at a temperature that is some fraction of its ionization potential.
At the temperatures which predominate in clusters, iron is mainly in the fully
stripped, hydrogenic, or heliumlike stages.

Excitation Equilibrium

For ions with bound electrons, the population of excited states are determined
mainly by a balance between collision excitation by free electrons and radia-
tive de-excitation. In general, the spontaneous radiative de-excitation rates
are much higher than the excitation rates, and the electrons are almost al-
ways found in the ground level. The population of excited states are much
lower than would be expected in thermodynamic equilibrium (Boltzmann dis-
tribution). Collisional de-excitation rates are much lower than radiative de-
excitation rates; this means that there are no X-ray spectral diagnostics which
determine the local density in the gas.

3 X-ray Emission

The X-ray emission of the intracluster gas is mainly due to thermal
bremsstrahlung and line emission. There are smaller contributions of contin-
uum from bound-free (recombination) emission and from two-photon decays
of 2s levels in hydrogenic and helium-like ions.

The emissivity due to thermal bremsstrahlung (free–free emission) is given
by

εffν =
25πe6

3mec3

(
2π

3mek

)1/2

neT
−1/2 exp(−hν/kT )

∑
i

Z2
i nigff(Zi, T, ν) , (7)

where the emissivity εν is defined as the emitted energy per unit time, fre-
quency, and volume. The sum is over the various ions in the plasma, but is
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dominated by hydrogen and helium for Solar abundances. The Gaunt factor
gff(Zi, T, ν) corrects for quantum mechanical effects and for the effect of dis-
tant collisions, and is a slowly varying function of frequency and temperature.
As a result, the dominant dependence of the free–free emissivity on frequency
is the Boltzmann exponential factor, and the main dependences on tempera-
ture are this factor and the square–root factor T−1/2. Thermal bremsstrahlung
produces a roughly exponential continuum component in the X-ray spectrum.
At high temperatures T ∼> 3×107 K, thermal bremsstrahlung is the dominant
emission mechanism.

At lower temperatures, the main X-ray radiation is from lines. The
strongest line feature observed from most clusters of galaxies is the complex of
iron Fe Kα lines at about 6.7 keV. This line feature is actually a blend of lines
from iron ions (mainly Fe+24 and Fe+25) and weaker lines from nickel ions.
The notation “Kα” gives the principal quantum number n of the lower level of
the transition and the change in the principal quantum number Δn ≡ n′ −n,
where n′ is the principal quantum number of the upper level of the transition.
K indicates that the lower level is in the K-shell (n = 1), L indicates the lower
level is in the L-shell (n = 2), and so on, while α indicates that Δn = 1, β
indicates that Δn = 2, etc. In addition to the Fe K line complex, the X-ray
spectra of clusters of galaxies contain a large number of lower energy lines.
These include the K lines of the common elements lighter than iron, such as
C, N, O, Ne, Mg, Si, S, Ar, and Ca, as well as the L lines of Fe and Ni. These
lines become very strong at lower temperatures (T ∼< 107 K).

As an illustration, Fig. 1 shows the predicted X-ray spectrum of an X-
ray cluster [53]. The model cluster is isothermal in its outer regions (with a
temperature of 8 × 107 K), and has a cooling core at its center. The figure
shows the overall exponential continuum from thermal bremsstrahlung, the
Fe K lines at about 7 keV (which come mainly from the region of the cluster
outside of the cooling flow), and the lower energy lines from the cooling core.

Most X-ray lines are excited by collisional excitation by electrons, although
radiative and dielectronic recombination and inner shell collisional ionization
also play a role. The emissivity due to a collisionally excited line is usually
written [36]:

∫
εline
ν dν = n(X i)ne

h3νΩ(T )B
4ωgs(X i)

[
2

π3m3
ekT

]1/2

e−ΔE/kT , (8)

where hν is the energy of the transition, ΔE is the excitation energy above
the ground state of the excited level, B is the branching ratio for the line (the
probability that the upper state decays through this transition), and Ω is the
‘collision strength’, which is often a slowly varying function of temperature.

The intracluster gas is almost certainly in collisional ionization equilibrium
(Sect. 2.1); under these circumstances, the ionization fractions depend only
on the electron temperature T , and are independent of the density of the gas.
Then, the density of any ion is just proportional to the proton density in the
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Fig. 1. Model X-ray spectrum of a cluster of galaxies. The cluster was assumed to
be isothermal at T = 8 × 107 K in its outer regions, and to have a large amount of
cool gas (a cooling core) in its inner regions

gas times the abundance of the relevant element relative to hydrogen. Thus,
all of the X-ray emission processes in the gas scale with the product npne of
the proton and electron densities, respectively. If Lν is the X-ray luminosity
per unit frequency emitted by a cluster, then this can be written as

Lν = Λν(T,Abundances)
∫

nenp dV , (9)

where the integral is over the volume V of the cluster. The total emissivity εν =
Λνnenp, where Λν depends only on the temperature and the abundances of the
heavier elements relative to hydrogen. Similarly, the X-ray surface brightness
is given by

Iν = Λν(T,Abundances)
∫

nenp dl . (10)

Here, the integral is along the line of sight distance l through the cluster.
The emissivity of a line is then proportional to the square of the density

and to the abundance of the relevant element, and depends significantly on
the electron temperature. Because the thermal bremsstrahlung emissivity also
is proportional to the square of the density (7), the ratio of line emission to
thermal bremsstrahlung continuum emission is independent of density. Line
ratios or the shape of the X-ray continuum spectrum can be used to derive a
temperature for the gas in a cluster. Then, the ratio of line emission to thermal
bremsstrahlung continuum emission can be used to determine the abundance
of the heavy element responsible for the line.
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4 The Intracluster Medium as a Fluid

4.1 Mean Free Paths

The mean free paths of electrons and ions in a plasma without a magnetic
field are determined by Coulomb collisions [43]. The electrons in a Maxwellian
plasma undergo Coulomb collisions in a time which is a factor of

√
me/mp

shorter than the protons (Sect. 2.1). On the other hand, the electrons move
faster by the inverse of this factor. Thus, the mean free paths of electrons and
protons are essentially equal, with

λp = λe =
33/2(kT )2

4π1/2nee4 ln Λ
≈ 23

(
T

108 K

)2 ( ne

10−3 cm−3

)−1

kpc . (11)

These mean free paths are smaller than most scales of interest in clusters; they
are only about 1% of the radius of a cluster (∼2 Mpc). Thus, it is reasonable to
treat the ICM as a fluid under most circumstances. The fluid approximation
might breakdown in the outer parts of a cluster (where the lower density
increases λe), in interactions with galaxies (whose sizes are comparable to
λe), if the ICM is very inhomogeneous, or in sharp transitions in the ICM
properties at shocks or cold fronts (Sects. 11 and 12.2).

4.2 Magnetic Fields and Gyroradii

In any case, the ICM apparently contains a significant magnetic field, with
typical values of B ∼ 1 μG. (See the chapter by Feretti & Giovannini for
more details concerning the magnetic field in clusters.) Stronger fields occur
in some smaller volumes of clusters. These fields are probably too weak to be
very important dynamically, as the magnetic pressure, PB = B2/(8π), is much
smaller than the typical gas pressures. However, the magnetic field does very
strongly effect the microscopic motions of electrons and ions. In the presence
of a magnetic field, electron and ions follow helical orbits, gyrating about
magnetic field lines. The gyroradii of electrons and ions in cluster magnetic
fields are very small. For example, the gyroradius of a typical electron is

rg ≈ 3 × 108

(
T

108 K

)1/2(
B

1μG

)−1

cm . (12)

These very small gyroradii probably insure that the ICM acts as a fluid even
when the Coulomb mean free paths are long.

5 Transport Processes

The fact that the mean free paths are small but finite implies that the local
properties of the gas will be influenced by the properties of the surrounding
gas through diffusive processes, also called transport processes. These include
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the thermal conduction of heat energy in non-isothermal gases, the viscous
transport of momentum, and the diffusion and settling of heavy elements
within the intracluster gas. I will concentrate on thermal conduction here;
viscosity and diffusion are discussed in [40].

5.1 Thermal Conduction

In a plasma with a gradient in the electron temperature, heat is conducted
down the temperature gradient. If the scale length of the temperature gradient
lT ≡ T/|∇T | is much longer than the mean free path of electrons, lT � λe,
then the heat flux is given by

Q = −κ∇T , (13)

where the thermal conductivity for a hydrogen plasma is [43]:

κ = 1.31neλek

(
kTe

me

)1/2

≈ 4.6 × 1013

(
Te

108 K

)5/2( ln Λ
40

)−1

erg cm−1 s−1 K−1 . (14)

Because of the inverse dependence on the particle mass, thermal conduction
is primarily due to electrons. If the very weak dependence of ln Λ on density
is ignored, then κ is independent of density but depends very strongly on
temperature.

If heat conduction operates at this “Spitzer” rate, then the gas in the cen-
tral regions of clusters is likely to be isothermal. In addition, heat conduction
would be very important at and would tend to eliminate any large local tem-
perature gradients, such as appear to occur in the cooling core of clusters or
near cold fronts (Sect. 12). On the other hand, the rate of thermal conduction
along a thermal gradient perpendicular to the magnetic field is very low, as
a result of the small gyroradii of electrons (12). Thus, transverse or tangled
magnetic fields may be able to suppress thermal conduction in clusters, at
least in some regions. The existence of very steep temperature gradients in
cold fronts has been used to argue that heat conduction is suppressed by a
factor of ∼>102 in these regions (Sect. 12.2).

6 Hydrodynamics

In the fluid limit, the ICM can be characterized by the local values of the gas
density ρ, the gas pressure P , the gas temperature T or internal energy, and
the gas velocity v. The gas pressure is determined by the ideal gas law:

P =
ρkT

μmp
, (15)
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where μ is the mean mass per particle in terms of the mass of a proton mp.
The dynamical equation for a single component fluid is [20]:

ρ
Dv

Dt
+ ∇P + ρ∇Φ = 0 , (16)

where Φ is the gravitational potential, and D/Dt is the Lagrangian derivative
with respect to time. Equation (16) ignores non-gravitational forces, such as
magnetic stresses or viscosity. The continuity equation (mass conservation)
is [20]:

∂ρ

∂t
+ ∇ · (ρv) = 0 . (17)

There is also an equation giving the variation in the energy in the fluid.
However, it is simpler to give this equation in terms of the entropy in the
gas, S. A useful quantity to consider is the specific entropy per particle in the
gas, s ≡ S/N , where N is the total number of particles. To within additive
constants, the specific entropy of an ideal gas is

s =
3
2
k ln

(
P

ρ5/3

)
=

3
2
k ln

(
T

ρ2/3

)
. (18)

To avoid the logarithmic character of the entropy, it is conventional to define
an “entropy parameter” K as

K ≡ kT

(ne)2/3
(19)

with units of keV cm2. Thus, s ∝ lnK. Then, the equation for the change in
the gas entropy can be written [20]:

ρ

μmp
k
Ds

Dt
= H−L , (20)

where H and L are the rate of heating and cooling per unit volume in the gas.
In the absence of irreversible processes like heating or cooling or shocks, the
specific entropy of a parcel of gas is constant.

7 Hydrostatic Equilibrium

Unless it is disturbed in some way, one would expect the gas in a cluster to
relax into hydrostatic equilibrium on roughly the sound crossing time of the
cluster,

ts ≡ D

cs
≈ 6.6 × 108 yr

(
T

108 K

)−1/2(
D

1 Mpc

)
. (21)

Here, D is the diameter of the cluster, and cs is the sound speed. Since this
time scale is shorter than the age of a typical cluster, which is a fraction
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of the Hubble time, the gas in many clusters should be close to hydrostatic
equilibrium. Exceptions would include clusters which are undergoing or have
recently undergone a major merger, and regions of a cluster where an AGN
has injected energy recently.

In hydrostatic equilibrium, the pressure forces balance gravity:

∇P = −ρ∇Φ ,
1
ρ

dP
dr

= −GM(r)
r2

, (22)

where M(r) is the total cluster mass within r, and the second form assumes
spherical symmetry. Because (22) gives a single relation for two gas properties
(density and pressure), one must also specify the entropy distribution of the
gas to determine its distribution.

7.1 Isothermal Models

A very simple model follows if the gas is assumed to be isothermal (T =
constant); isothermality might result if thermal conduction were efficient in
the cluster (Sect. 5.1). Then, the solution of the hydrostatic equation is

ln
[
ρ(r)
ρ0

]
=

μmp

kT
[Φ0 − Φ(r)] , (23)

where ρ0 and Φ0 are the central values of the the gas density and gravitational
potential, respectively. Note that the gas density will generally go to a finite
value as r → ∞.

Numerical simulations suggest that the dark matter distribution in clusters
should have a power-law drop off at large radii, and a flatter power-law at small
radii [35]. Thus, the dark matter distribution should have a cusp at the center
of the cluster. The NFW dark matter profile [35] has:

ρDM(r) = ρs

[(
r

rs

)(
1 +

r

rs

)2
]−1

, (24)

where rs and ρs are the characteristic scaling radius and density, respectively.
If this distribution applies to the sum of all the matter in a cluster, then the
potential is

Φ(r) = Φ0
ln (1 + r/rs)

r/rs
, (25)

and the central potential is Φ0 = −4πGρsr
2
s .

However, in the past the dark matter and/or galaxy distributions in clus-
ters were modeled using a function with a constant density core,

ρDM(r) = ρDM,0

[
1 +
(

r

rc

)2
]−3/2

, (26)
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where ρDM,0 is the central density and rc is the core radius. If this form is
assumed for the total matter density in a cluster, or if it applies to the galaxy
distribution, and the galaxies have an isotropic gaussian velocity distribution,
then the resulting gas density distribution is the “beta model” [4]:

ρ(r) = ρo

[
1 +
(

r

rc

)2
]−3β/2

. (27)

If the gas is isothermal, then this density distribution gives an X-ray surface
brightness distribution of the form

IX(r) = Io
X

[
1 +
(

r

rc

)2
]−3β+1/2

. (28)

This beta-model provides a reasonable fit to the X-ray surface brightness in
the outer regions of many cluster, with a typical value of β ≈ 2/3. However,
it does not fit the inner parts of cooling core clusters.

7.2 Adiabatic or Polytropic Models

The temperature profiles in clusters of galaxies are generally more consistent
with a gradual decline with radius at large radii, rather than isothermal gas
[48]. A simple alternative would be if the gas in clusters was adiabatic (had a
constant specific entropy); then the pressure and density would vary together
as P ∝ ργ with γ = 5/3. Often, one also considers distributions with the same
pressure-density relationship, but for values of γ in the range 1 ≤ γ ≤ 5/3.
We will refer to these distributions as “polytropic.” Then, the hydrostatic
equation can be solved to give

T (r)
T0

= 1 + (α− 1)
[
1 − Φ(r)

Φ0

]
, (29)

ρ(r)
ρ0

=
[
T (r)
T0

]1/(γ−1)

. (30)

Here, T0 is the central temperature, and α ≡ T (∞)/T0. The temperature
profiles in the outer parts of clusters can generally be fit with intermediate
values of γ ∼1.2–1.3 [24].

7.3 Surface Brightness Deprojection

The gas distributions in clusters can be derived directly from observations of
the X-ray surface brightness of the cluster, if the shape of the cluster is known
and if the X-ray observations are sufficiently detailed and accurate. The X-ray



12 C. L. Sarazin

surface brightness at a photon frequency ν and at a projected distance b from
the center of a spherical cluster is

Iν(b) =
∫ ∞

b2

εν(r)dr2

√
r2 − b2

, (31)

where εν is the X-ray emissivity. This Abel integral can be inverted to give
the emissivity as a function of radius,

εν = − 1
2πr

d
dr

∫ ∞

r2

Iν(b)db2√
b2 − r2

. (32)

The emissivity εν is proportional to the square of the density, and its
spectral dependence is determined by the gas temperature and abundances
(7), (8) and (9). Thus, the radial dependence of the spectrum and intensity
of X-rays can be de-projected to the the gas density ρ(r), gas temperature
T (r), and abundances as a function of physical radius. The gas pressure is
then given by the ideal gas law (15).

8 Cluster Masses

Once the gas density has been determined by either model fitting or de-
projection, the gas mass can be derived simply as

Mgas(r) = 4π
∫ r

0

ρ(r′)(r′)2 dr′ . (33)

Here, Mgas(r) is the gas mass interior to the radius r.
The total gravitational mass can be derived from the condition of hydro-

static equilibrium (22), which can be written as

M(r) = − r2

Gρ(r)
dP
dr

, (34)

where M(r) is the total mass interior to r. This equation can also be written
as

M(r) = −kT (r)r
μmpG

[
d ln ρ(r)
d ln r

+
d lnT (r)

d ln r

]
. (35)

Optical observations of the galaxies can be used to estimate the total mass
of galaxies interior to r, Mgal(r). Any diffuse stellar light can be included
in this; although these values can be difficult to determine, the stars and
galaxies constitute only a small fraction of the mass, so this correction is not
so important. Then, the mass of dark matter in the cluster (interior to r) is
given by
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MDM(r) = M(r) −Mgas(r) −Mgal(r) . (36)

In typical clusters, the masses of stars and galaxies are much smaller than
those of the hot gas, with Mgal ≈ 0.15Mb at large radii [49]. Thus, hot plasma
is the dominant form of baryonic matter in clusters of galaxies, with Mgas ≈
6Mgal at large radii. It appears that the same may be true on large scales
throughout the present day Universe; it seems that most of the baryons in the
Universe today are in hot, diffuse intergalactic gas (often called WHIM, or
Warm Hot Intergalactic Medium), rather than stars and galaxies (e.g., [8]).
In this sense, cluster represent the tip of the iceberg. With their very high
densities, they are the one place it has been easy to detect the bulk of the
baryons, which are in intergalactic gas.

The gas mass fraction fgas(r) and baryon fraction fb(r) are then

fgas(r) =
Mgas(r)
M(r)

, fbary(r) =
Mgas(r) + Mgal(r)

M(r)
. (37)

The observations of most clusters show an increase in fgas(r) with radius r
in the inner parts of clusters [1]. Thus, the gas is more broadly distributed
than the dark matter in clusters. The gas fractions level out at radii which are
r ∼> 0.2rvir. Rich clusters have gas fractions which average 〈fgas(r2500)〉 = 12%
at a radius where the mean interior density is 2500 times the critical density
[1]. For typical clusters, r2500 ≈ 0.25rvir. The total gas fraction within rvir

will be a bit larger than this. Thus, clusters appear to consist of about 2–3%
stars and galaxies, ∼14% hot gas, and ∼84% dark matter. Although these are
recent values, clusters of galaxies provided some of the earliest evidence that
the mass in the Universe was predominantly dark matter.

Clusters of galaxies are very useful cosmological probes. Arguably, they
are the largest objects in the Universe which are dynamically relaxed. On
the other hand, they are probably the smallest objects which formed from a
sufficiently large volume that they contain a fair sample of the material in
the Universe. Thus, the ratio of baryons to dark matter in clusters should
be close to the universal value. Numerical simulations do indicate that the
baryon fraction in clusters is nearly the general value in the Universe; even at
r2500, fbary is about 82% of the universal value [10].

When combined with the density of baryons inferred from Big Bang nu-
cleosynthesis, the observed baryon fraction in clusters indicates that the total
mass density in the Universe is Ωm ≈ 0.3 [52]. Thus, cluster have provided
some of the earliest and strongest evidence that we live in a low density Uni-
verse, with too little matter to close the Universe and reverse the expansion
of the Big Bang.

The measured values of fgas and fbary depend on the distance d to a
cluster as d3/2. On the other hand, if clusters are fair samples of the materials
in the Universe, then fbary should be independent of redshift or distance.
Thus, a comparison of fbary in low redshift and high redshift clusters provides
a measure of the distance to the clusters which is independent of the redshift.
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Such measurements provide evidence that we live in an accelerating Universe,
with an effective cosmological constant of ΩΛ ≈ 0.7 [1]. This is in concordance
with the results from WMAP [2] and supernova Type Ia observations at high
redshifts.

9 Heating and Cooling of Intracluster Gas

9.1 Why Is the ICM So Hot?

When it was first observed in X-rays, one of the most surprising features about
the intracluster gas was its very high temperature. Why is this gas so hot? In
fact, this is one of the easiest aspects of the ICM to understand. At least in
rich clusters, most of the heating is gravitational in origin. The basic idea is
that clusters have huge masses, and very deep gravitational potential wells.
Essentially, any means of introducing the gas into a cluster will cause it to
move very rapidly, and collide with other gas, and be shocked. For example,
if the gas fell into the cluster (either at the same time as the dark matter,
or subsequently), cluster gravitational potentials imply that the gas would
fall in at a speed ∼> 1000 km s−1. Unless the gas motions were very carefully
controlled, the gas would encounter other gas moving at similar velocities, and
the intersecting gas streams would collide and shock. Since the ICM has heavy
elements, a portion of it came out of galaxies. If it did so after the clusters
formed, then the galaxies would be moving at orbital speeds of ∼> 1000 km s−1

in the cluster, and gas ejected from different galaxies would collide and shock
at these sorts of speeds. (If the gas came out of galaxies before clusters formed,
then it had to fall into a cluster, and was shocked as described previously.)
Thus, it is likely that essentially all of the gas in the ICM medium shocked at
speeds of ∼> 1000 km s−1, and was heated in this way.

In actually, we believe that clusters form hierarchically from the merger
of smaller groups and clusters. Such mergers are discussed extensively below
(Sect. 10). Thus, the specific mechanism for much of the heating of the ICM
is likely to be merger shocks.

9.2 Simple Scaling Laws for Gravitational Heating

If one assumes that gravitational heating dominates in clusters, and makes
a few other simple assumptions, it is possible to derive a number of simple
scaling laws for the X-ray properties of clusters [18]. If the gas in clusters
is in hydrostatic equilibrium and is distributed similarly to the dark matter,
then the typical gas temperature should be kT ∼ μmpGM/R, where M is
the total cluster mass, and R is the cluster radius. If one can treat the for-
mation of a cluster as equivalent to the collapse of a isolated, spherical region
of overdensity in the Universe, then the post-collapse average density in the
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cluster should be 〈ρtot〉 ∼ 180ρcrit(zform), where ρtot is the total mass den-
sity (dark matter and baryons), and ρcrit(zform) is the critical density for the
Universe to collapse at the epoch of formation of the cluster. If most clusters
have formed recently, then one could approximate zform ∼ 0. Finally, clusters
are large enough to contain a fair sample of the material in the Universe, and
thus it is reasonable to assume that the baryon fraction in clusters (which is
predominantly in the hot gas) is the universal value (Sect. 8). Then, the radii
of clusters should scale with mass as

R ∝ M1/3 . (38)

The gas temperature would scale as

T ∝ M2/3 , (39)

and the X-ray luminosity vs. temperature relationship would be

LX ∝ T 2 . (40)

The latter scaling assumes that the X-ray emission is mainly due to thermal
bremsstrahlung, which is true for hot clusters.

9.3 Non-Gravitational Heating

There are a number of indications that non-gravitational heating or cooling
processes may affect the ICM, particularly in smaller clusters and groups.
First, the observed cluster X-ray properties do not agree very well with the
scaling relations for purely gravitational heating (38), (39) and (40). Prob-
ably, the most significant deviation is that the measured X-ray luminosity–
temperature relation is much steeper than (40) [23]. The departures for the
scaling relations are particularly strong for cooler clusters and groups. Sec-
ond, the observed gas distributions in clusters are more extended than would
be expected from purely gravitational heating. The gas distributions often
have central cores. This suggests that some non-gravitational heating pro-
cesses have occurred and have puffed up the gas distributions, particularly in
the poorer clusters. This would lower the average density in the gas, and thus
reduce the X-ray luminosity. An alternative possibility is that inhomogeneous
cooling has removed the cooler ICM, increasing the average temperature of
the gas which remains. Presumably, this cooling would also lead to star and
galaxy formation. These topics have been reviewed extensively in [50].

If the non-gravitational heating occurred just prior to the collapse of a
cluster, then the amount of heat needed is ∼ 2 keV per particle [21]. How-
ever, a more useful quantity to describe the preheating is probably the extra
entropy per particle Δs (18). As noted in Sect. 6, the specific entropy is a
Lagrangian quantity which moves with the gas, and which remains constant
for reversible changes. As discussed in Sect. 6, it is conventional to use the
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entropy parameter K (19) rather than s. For purely gravitational heating, the
scaling laws described above (Sect. 9.2) imply that the entropy parameter is
expected to scale as

K ∝ T ∝ M2/3 . (41)

Observations of clusters and groups initially suggested that preheating pro-
duced an extra entropy of ΔK ≈ 135 keV cm−2 [22, 37]. It now appears that
such an “entropy floor” may be to simplified to explain the detailed varia-
tions in entropy between clusters and the radial variations within clusters.
Also, the existence of the Lyman alpha forest and other quasar absorption
lines indicates that not all of the intergalactic gas underwent the same level of
preheating. Nonetheless, this value provides a useful value in assessing models
for the thermal history of the ICM.

The radial variation of the entropy in the ICM also appears to be inconsis-
tent with purely gravitational heating. Gravitational heating models predict
that the entropy vary roughly as K ∝ r1.1. The observed entropy profiles in
clusters are much flatter in the center [38].

Supernovae could provide a significant source of heating of the ICM. These
would include core collapse supernova associated with the deaths of massive
stars. Since the galaxies in clusters today contain very few such stars, this
would have occurred during the epoch of star formation and galaxy forma-
tion. The supernovae might have driven galactic winds. The second type of
supernovae are Type Ia’s, which are produced by older binary star systems.
They would provide a more continuous source of heating.

Supernovae also eject heavy elements. Thus, the abundances in clusters
can be used to limit the total number of supernova which have occurred. The
observed abundances suggest that the extra energy added is probably ∼0.3
keV per particle [21]. This is a bit low to explain the required preheating, but
might be possible. However, this mechanism would also require that a large
fraction of the supernova explosion energy be converted into heat in the ICM,
which may also be a difficulty.

Active galactic nuclei (AGNs) within clusters might also provide a signif-
icant amount of heating. As with the supernovae, it is difficult to determine
what fraction of the energy produced by AGNs goes into heating the surround-
ing medium. In this regard, it is only the AGN output in kinetic energy in
jets or in relativistic particles which is likely to be useful. It may be important
that the early-type galaxies found in clusters generally host radio galaxies and
radio quasars, which are more likely to deposit energy into the ICM.

One way to limit the total energy input by AGNs is to look at the total
masses of supermassive black holes contained in clusters today. In general, all
large bulges appear to contain supermassive black holes, and there is a strong
correlation of black hole mass with bulge mass or velocity dispersion. If the
growth of black holes occurred largely by accretion (rather than merging of
existing massive black holes), then the total accretion energy from black holes
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can be derived from their total mass. This could provide a significant level of
heating for the ICM if the fraction of accreted energy which goes into heating
is ∼>10% [5].

9.4 Cooling in the Intracluster Medium

The primary cooling process for the ICM is the emission of X-ray radiation.
The emission is proportional to the square of the density and varies with
temperature (7), (8), and (9). Thus, the total cooling rate per unit volume L
in the gas can

L = Λ(T,Abundances)nenp , (42)

where Λ depends only on the temperature and the abundances of the heav-
ier elements relative to hydrogen. At high temperature (kT ∼> 2 keV), the
dominant radiation is thermal bremsstrahlung, and Λ ∝ T 1/2. At lower tem-
perature, line emission becomes dominant, and Λ decreases with increasing
temperature.

At high temperatures where thermal bremsstrahlung dominates, the time
required for gas to cool to low temperatures at constant pressure is

tcool = 69
( ne

10−3 cm−3

)−1
(

T

108 K

)1/2

Gyr . (43)

Note that cooling accelerates as the gas cools; this tendency is even stronger
below kT ∼< 2 keV due to line emission. The cooling time is much longer than
the Hubble time in the outer parts of clusters. However, it can be quite short
(tcool ∼ 300 Myr) in the inner regions of cooling core clusters.

It is interesting to write the cooling time as a function of the entropy and
temperature rather than the density and temperature:

tcool = 17
(

K

130 keVcm−2

)3/2(
kT

2 keV

)−1

Gyr . (44)

Note that the cooling time is less than the Hubble time for K ∼< 130 keV cm−2

for kT ∼ 2.5 keV. If clusters start with gas with a wide range of entropies,
the lower entropy gas will cool rapidly and be removed from the ICM. Thus,
cooling can increase the average entropy of the gas and provide an effective
“floor” to the ICM entropy [51]. The cooled gas presumably goes into forming
galaxies and stars. Feedback heating from supernovae, galactic winds, and
AGNs (Sect. 9.3) might result in some of the cooled gas actually becoming
hotter ICM. However, the result is to remove the cooler gas and raise the
average entropy of the ICM.

Thus, while the bulk of the heating of the ICM in large clusters is due
to gravitational heating, mainly by merger shocks, smaller clusters and the
centers of clusters show evidence for the effects of non-gravitational heating
and cooling. The cooling leads to star and galaxy formation, and which leads
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to possible heating by supernovae, galactic winds, and AGNs. Thus, the ICM
(and intergalactic medium more generally) preserve a unique record of the
thermal history of the Universe.

10 Cluster Mergers

Major cluster mergers are the most energetic events in the Universe since the
Big Bang. Cluster mergers are the mechanism by which clusters are assem-
bled. In these mergers, the subclusters collide at velocities of ∼2000 km/s,
releasing gravitational binding energies of as much as ∼> 1064 ergs. During
mergers, shocks are driven into the intracluster medium. In major mergers,
these hydrodynamical shocks dissipate energies of ∼ 3× 1063 ergs; such shocks
are the major heating source for the X-ray emitting intracluster medium. The
shock velocities in merger shocks are similar to those in supernova remnants
in our Galaxy, and we expect them to produce similar effects. Mergers shocks
should heat and compress the X-ray emitting intracluster gas, and increase
its entropy. We also expect that particle acceleration by these shocks will pro-
duce relativistic electrons and ions, and these can produce synchrotron radio,
inverse Compton (IC) EUV and hard X-ray, and gamma-ray emission. (See
the chapter by Feretti & Giovannini for more details relativistic particles and
non-thermal emission in clusters.)

11 Thermal Physics of Merger Shocks

The intracluster medium (ICM) is generally close to hydrostatic equilibrium
in clusters which are not undergoing strong mergers. The virial theorem then
implies that the square of the thermal velocity (sound speed) of the ICM is
comparable to the gravitational potential. During a merger, the infall veloc-
ities of the subclusters are comparable to the escape velocity, which implies
that the square of the infall velocity is larger (by roughly a factor of two) than
the gravitational potential. Thus, the motions in cluster mergers are expected
to be supersonic, but only moderately so. As a result, one expects that cluster
mergers will drive shock waves into the intracluster gas of the two subclusters.
Let vs be the velocity of such a shock wave relative to the preshock intraclus-
ter gas. The sound speed in the preshock gas is cs =

√
(5/3)P/ρ, where P is

the gas pressure and ρ is the density. Then, the Mach number of the shock is
M ≡ vs/cs. Based on the simple argument given above, one expects shocks
with Mach numbers of M ∼< 2. Stronger shocks may occur under some cir-
cumstances, such as in the outer parts of clusters, or in low mass subclusters
merging with more massive clusters.

Shocks are irreversible changes to the gas in clusters, and thus increase
the entropy S in the gas. A useful quantity to consider is the specific entropy
per particle in the gas, s (18). Observations of X-ray spectra can be used to
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determine T , while the X-ray surface brightness depends on ρ2. Thus, one can
use X-ray observations to determine the specific entropy in the gas just before
and just after apparent merger shocks seen in the X-ray images. Since merger
shocks should produce compression, heating, pressure increases, and entropy
increases, the corresponding increase in all of these quantities (particularly
the entropy) can be used to check that discontinuities are really shocks (e.g.,
not “cold fronts” or other contact discontinuities, Sect. 12.2).

In [26], this test was applied to ASCA temperature maps and ROSAT
images of Cygnus-A and Abell 3667, two clusters which appeared to show
strong merger shocks. Recent Chandra images have shown that the feature in
Abell 3667 is a cold front [47]. In Cygnus-A, the increase in specific entropy
in the shocked regions is roughly Δs ≈ (3/2)k. The specific heat per particle
q which must be dissipated to produce this change in entropy is q ≈ TΔs ≈
(3/2)kT , or about the present specific heat content in the shocked gas. Thus,
these observations provide a direct confirmation that merger shocks contribute
significantly to the heating of the intracluster gas.

The most dramatic merger shock which has been seen with Chandra is in
the “Bullet Cluster” 1E0657-56 [7, 29, 30]. This is a very high velocity (∼4500
km s−1) merger occurring nearly in the plane of the sky, with a merger bow
shock located ahead of a “cold front” (Sect. 12.2). Another prominent merger
shocks with a Mach number of M ≈ 2.1 is seen in Abell 520 [25]. In both
cases, the merger shocks appear to have associated diffuse radio emission (See
the chapter by Feretti & Giovannini for more details.)

11.1 Shock Kinematics

The variation in the hydrodynamical variables in the intracluster medium
across a merger shock are determined by the standard Rankine–Hugoniot
jump conditions [20], if one assumes that all of the dissipated shock energy
is thermalized. Consider a small element of the surface of a shock (much
smaller than the radius of curvature of the shock, for example). The tangential
component of the velocity is continuous at the shock, so it is useful to go to
a frame which is moving with that element of the shock surface, and which
has a tangential velocity which is equal to that of the gas on either side of the
shock. In this frame, the element of the shock surface is stationary, and the
gas has no tangential motion. Let the subscripts 1 and 2 denote the preshock
and post-shock gas; thus, v1 = vs is the longitudinal velocity of material into
the shock (or alternative, the speed with which the shock is advancing into
the preshock gas). Conservation of mass, momentum, and energy then implies
the following jump conditions

ρ1v1 = ρ2v2 ,

P1 + ρ1v
2
1 = P2 + ρ2v

2
2 ,

w1 +
1
2
v2
1 = w2 +

1
2
v2
2 . (45)
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Here, w = P/ρ+ε is the enthalpy per unit mass in the gas, and ε is the internal
energy per unit mass. If the gas behaves as a perfect fluid on each side of the
shock, the internal energy per unit mass is given by: ε = /(γ − 1)P/ρ, where
γ is the ratio of specific heats (the adiabatic index) and is γ = 5/3 for fully
ionized plasma. The jump conditions can be rewritten as:

P2

P1
=

2γ
γ + 1

M2 − γ − 1
γ + 1

v2

v1
=

ρ1

ρ2
≡ 1

C
=

2
γ + 1

1
M2

+
γ − 1
γ + 1

, (46)

where C ≡ ρ2/ρ1 is the shock compression.
If one knew the velocity structure of the gas in a merging cluster, one could

use these jump condition to derive the temperature, pressure, and density
jumps in the gas. At present, the best X-ray spectra for extended regions in
clusters of galaxies have come from CCD detectors on ASCA, Chandra, and
XMM/Newton. CCDs have a spectral resolution of >100 eV at the Fe K line
at 7 keV, which translates into a velocity resolution of >4000 km/s. Thus, this
resolution is (at best) marginally insufficient to measure merger gas velocities
in clusters. In a few cases with very bright regions and simple geometries,
the grating spectrometers on Chandra and especially XMM/Newton may be
useful.

At present, X-ray observations can be used to directly measure the tem-
perature and density jumps in merger shocks. Thus, one needs to invert the
jump relations to give the merger shock velocities for a given shock tempera-
ture, pressure, and/or density increase. If the temperatures on either side of
the merger shock can be measured from X-ray spectra, the shock velocity can
be inferred from [26]:

Δvs =
[
kT1

μmp
(C − 1)

(
T2

T1
− 1

C

)]1/2

, (47)

where Δvs = v1 − v2 = [(C − 1)/C]vs is the velocity change across the shock,
and μ is the mean mass per particle in units of the proton mass mp. The shock
compression C can be derived from the temperatures as

1
C

=

[
1
4

(
γ + 1
γ − 1

)2(
T2

T1
− 1
)2

+
T2

T1

]1/2

− 1
2
γ + 1
γ − 1

(
T2

T1
− 1
)

. (48)

Alternatively, the shock compression can be measured directly from the X-ray
image. However, it is difficult to use measurements of the shock compression
alone to determine the shock velocity, for two reasons. First, a temperature
is needed to set the overall scale of the velocities; as is obvious from (46),
the shock compression allows one to determine the Mach number M but
not the shock velocity. The second problem is that temperature or pressure
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information is needed to know that a discontinuity in the gas density is a shock,
and not a contact interface (e.g., the “cold fronts” discussed in Sect. 12.2
below).

X-ray temperature maps of clusters have been used to derive the merger
velocities using these relations. Reference [26] used ASCA observations to de-
termine the kinematics of mergers in three clusters (Cygnus-A, Abell 2065,
and Abell 3667). Because of the poor angular resolution of ASCA, these
analyses were quite uncertain. More recently, possible shocks have been de-
tected in Chandra images of a number of merging clusters (e.g., Abell 85 [19],
Abell 665 [27], Abell 3667 [47]), and the shock jump conditions have been
applied to determine the kinematics in these clusters.

The simplest case is a head-on symmetric merger (b = 0 and M1 = M2) at
an early stage when the shocked region lies between the two cluster centers.
Reference [26] suggests that the Cygnus-A cluster is an example. If the gas
within the shocked region is nearly stationary, then the merger velocity of the
two subclusters is just v = 2Δvs. Applying these techniques to the ASCA
temperature map for the Cygnus-A cluster, Reference [26] found a merger
velocity of v ≈ 2200 km/s. This simple argument is in reasonable agreement
with the results of numerical simulations of this merger [39].

One can compare the merger velocities derived from the temperature
jumps in the merger shocks with the values predicted by free-fall from the
turn-around radius. In the case of Cygnus-A, [26] found good agreement with
the the free-fall velocity of ∼2200 km/s. This consistency suggests that the
shock energy is effectively thermalized, and that a major fraction does not go
into turbulence, magnetic fields, or cosmic rays. Thus, the temperature jumps
in merger shocks can provide an important test of the relative roles of thermal
and non-thermal processes in clusters of galaxies.

11.2 Nonequilibrium Effects

Cluster mergers are expected to produce collisionless shocks, as occurs in
supernova remnants. As such, nonequilibrium effects are expected, including
non-equipartition of electrons and ions and nonequilibrium ionization [26, 44,
45]. Collisionless shocks are generally not as effective in heating electrons as
ions. Assuming that the post-shock electrons are somewhat cooler than the
ions, the time scale for electron and protons to approach equipartition as a
result of Coulomb collisions in a hot ionized gas is (2) [43]:

teq =
3mpme

8
√

2πnee4 ln Λ

(
kTe

me

)3/2

≈ 2.1 × 108

(
Te

108 K

)3/2 ( ne

0.001 cm−3

)−1

yr , (49)

where ne and Te are the electron number density and temperature, re-
spectively, and Λ is the Coulomb factor. The relative velocity between the
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post-shock gas and the shock front is (1/4)vs; thus, one would expect the
electron temperature to reach equipartition a distance of

deq ≈ 160
(

vs

3000 km/s

) (
Te

108 K

)3/2 ( ne

0.001 cm−3

)−1

kpc (50)

behind the shock front. Of course, it is the electron temperature (rather than
the ion or average temperature) which determines the shape of the X-ray spec-
trum. This distance is large enough to insure that the lag could be spatially
resolved in X-ray observations of low redshift clusters. Similar effects might
be expected through non-equilibrium ionization.

On the other hand, it is likely that the nonequilibrium effects in cluster
merger shocks are much smaller than those in supernova blast wave shocks
because of the low Mach numbers of merger shocks. That is, the preshock gas
is already quite hot (both electrons and ions) and highly ionized. Moreover, a
significant part of the heating in low Mach number shocks is due to adiabatic
compression, and this would still act on the electrons in the post-shock gas
in merger shocks, even if there were no collisionless heating of electrons. For
example, in a M = 2, γ = 5/3 shock, the total shock increase in temperature
is a factor of 2.08 (46). The shock compression is C = 2.29, so adiabatic
compression increases the electron temperature by a factor of C2/3 = 1.74,
which is about 83% of the shock heating.

11.3 Mergers and Basic Gravitational Physics Effects

Merging clusters also provide several very direct tests of basic gravitational
physics. These tests are possible because of the dynamical nature of mergers,
and the difference in the behavior of collisional and non-collisional components
of clusters. The gas is clusters is a collisional fluid (Sect. 4) with a mean-
free-path which is small compared to the scale of clusters (11). Thus, when
clusters collide, the motion of the gas will be retarded by ram pressure and
shocks. On the other hand, the galaxies in clusters are essentially collisionless.
When clusters collide, the galaxies will fly by one another. Thus, the galaxies
in a merging subcluster will often be found ahead of the gas from the same
subcluster. This is particularly obvious in late stage mergers with “cold fronts”
(Sect. 12.2), where the gas which was initially at the center of a subcluster
will be found lagging behind the central dominant and other galaxies from the
subcluster. Perhaps the most prominent example of this is the in the “Bullet
Cluster” 1E0657-56 [7, 29, 30], where the cold front and dense gas from the
subcluster are clearly separated for the galaxies from the same subcluster.

In the most widely accepted model for “dark matter” (Sect. 8), the dom-
inant component of the mass of the Universe is made up of collisionless
elementary particles. For example, this would be true of Cold Dark Matter
(e.g., [2]). If this is the case, one would expect that the dark matter would be
located in the same regions of merging clusters as the galaxies. An alternative
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idea is that the law of gravity or laws of motions differ from the Newtonian
form at large distances or small accelerations [33]. In these MOdified Newto-
nian Dynamics (MOND) theories, there is no dark matter component of the
Universe, and gravity is just due to ordinary baryonic matter. In clusters of
galaxies, the vast majority of the ordinary baryonic matter is in the hot X-ray
gas (Sect. 8). Thus, MOND theories predict that in a merger, the gravity (or
apparent dark matter) should mainly be located where the gas is located. In
an advanced merger, the gas is located behind the galaxies.

The location of the gravity (or apparent dark matter) can be determined
from weak gravitational lensing observations of the cluster [7, 30]. This test
has been performed on the “Bullet Cluster” 1E0657-56 [7, 30], where the
weak lensing measurement show that the gravity of the merging subcluster is
centered on the galaxies, and is clearly displaced from the located of the sub-
cluster gas. Thus, these measurements provide what is arguably the strongest
proof of the existence of dark matter, rather than a change in the laws of
gravity.

Another alternative to the conventional Cold Dark Matter hypothesis is
that the dark matter consists of weakly interacting elementary particles, but
the particles do have a small but significant cross-section for self-interaction
[42]. If this were the case, the dark matter would act as a collisional fluid,
and would be displaced from the position of the galaxies in a merging cluster
towards the center of the subcluster gas. In the “Bullet Cluster” 1E0657-56 no
such displacement is evident [30], and the lack of such a displacement can be
used to set an upper limit on the self-interaction cross-section per unit mass
of dark matter of < 1 cm2 g−1. This is a very serious constraint on models of
self-interacting dark matter.

12 Mergers and Cool Cluster Cores

12.1 Cooling Flows vs. Mergers

The centers of a significant fraction of clusters of galaxies have luminous cusps
in their X-ray surface brightness known as “cooling flows” (see [12] for an
extensive review). In every case, there is a bright (cD) galaxy at the center
of the cooling flow region. The intracluster gas densities in these regions are
much higher than the average values in the outer portions of clusters. X-
ray spectra indicate that there are large amounts of gas at low temperatures
(down to ∼107 K), which are much cooler than those in the outer parts of
clusters. The high densities imply rather short cooling times tcool (the time
scale for the gas to cool to low temperature due to its own radiation). The
hypothesis is that the gas in these regions is cooling from higher intracluster
temperature (∼108 K) down to these lower temperatures as a result of the
energy loss due to the X-ray emission we observe. Typical cooling rates are
∼100 M� yr−1. The cooling times, although much shorter than the Hubble
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time, are generally much longer than the dynamical (i.e., sound crossing time)
of the gas in these regions. As a result, the gas is believed to remain nearly in
hydrostatic equilibrium. Thus, the gas must compress as it cools to maintain
a pressure which can support the weight of the overlying intracluster medium.

The primary observational characteristics of cooling flows are very bright
X-ray surface brightnesses which increase rapidly toward the center of the clus-
ter. The high surface brightnesses imply high gas densities which also increase
rapidly towards the cluster center. These regions contain cooler cluster gas.

Empirically, there is significant indirect evidence that mergers disrupt cool-
ing flows. There is a strong statistical anticorrelation between cooling flows
and/or cooling rates, and irregular structures in clusters as derived by statisti-
cal analysis of their X-ray images [3]. Looked at individually, very strong cool-
ing cores are almost never associated with very irregular or bimodal clusters,
which are likely merger candidates [9, 17]. There are some cases of moderate
cooling flows in merging clusters; in most cases, these appear to be early-
stage mergers where the merger shocks haven’t yet reached the cooling core
of the cluster. Examples may include Cygnus-A [26] and Abell 85 [19]. There
also are a large number of merging clusters at a more advanced stage with
relatively small cooling cores; Abell 2065 [26] may be an example. Recently,
Chandra Observatory X-ray images have shown a number of merging clusters
with rapidly moving cores of cool gas (the “cold fronts” discussed below in
Sect. 12.2). In these systems, the cooling flows appear to have survived, at
least to the present epoch in the merger.

It is unclear exactly how and under what circumstances mergers disrupt
cooling flows. The cooling flows might be disrupted by tidal effects, by shock
heating the cooler gas, by removing it dynamically from the center of the
cluster due to ram pressure, by mixing it with hotter intracluster gas, or by
some other mechanism. Numerical hydrodynamical simulations are needed to
study the mechanisms by which cooling flows are disrupted. This is a relatively
unexplored area, largely because the small spatial scales and rapid cooling time
scales in the inner regions of cooling flows are still a significant challenge to
the numerical resolution of hydrodynamical codes. McGlynn and Fabian [32]
argued that mergers disrupted cooling flows, but this was based on purely N-
body simulations. Hydrodynamical simulations have been made of the effects
of head-on mergers with relatively small subclusters (1/4 or 1/16 of the mass
of the main cluster) on a cooling flow in the main cluster [16]. They find
that the mergers disrupt the cooling flow in some cases, but not in others.
Their simulations suggest that the disruption is not due to tidal or other
gravitational effects.

Another possibility is that the merger shocks heat up the cooling flow gas
and stop the cooling flow. In the simulations, this does not appear to be the
main mechanism of cooling flow disruption. There are a number of simple
arguments which suggest that merger shocks should be relatively inefficient
at disrupting cooling flows. First, it is difficult for these shocks to penetrate
the high densities and steep density gradients associated with cooling flows,
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and the merger shocks would be expected to weaken as they climb these
steep density gradients. Even without this weakening, merger shocks have
low Mach numbers, and only produce rather modest increases in temperature
(∼< a factor of 2). These small temperature increases are accompanied by
significant compressions. As a result, shock heating actually decreases the
cooling time due to thermal bremsstrahlung emission for shocks with Mach
numbers M ≤ (21 + 12

√
3)1/2 ≈ 6.5. It is likely that the shocked gas will

eventually expand, and adiabatic expansion will lengthen the cooling time.
However, even if the gas expands to its preshock pressure, the increase in the
cooling time is not very large. For a M = 2 shock, the final cooling time after
adiabatic expansion to the original pressure is only about 18% longer than
the initial cooling time.

The simulations by [16] suggest that the main mechanism for disrupting
cooling flows is associated with the ram pressure of gas from the merging
subcluster. The gas in the cooling flow is displaced, and may eventually mix
with the hotter gas [39]. Earlier, [13] had argued that ram pressure, rather
than shock heating, was the main mechanism for disrupting cooling flows.
Assuming this is the case, one expects that the merger will remove the cooling
flow gas at radii which satisfy

ρscv
2
rel ∼> PCF(r) , (51)

where PCF(r) is the pressure profile in the cooling flow, ρsc is the density
of the merging subcluster gas at the location of the cooling flow, and vrel

is the relative velocity of the merging subcluster gas and the cooling flow.
Reference [16] finds that this relation provides a reasonable approximation to
the disruption in their simulations.

The pressure profile in the cooling flow gas prior to the merger is deter-
mined by the condition of hydrostatic equilibrium. If the cluster gravitational
potential has a wide core within which the potential is nearly constant (e.g.,
as in a King model), then the cooling flow pressure will not increase rapidly
into the center. In this case, once the merger reaches the central regions of
the cluster, if the ram pressure is sufficient to remove the outer parts of the
cooling flow, it should be sufficient to remove nearly all of the cooling flow.
On the other hand, if the cluster potential is sharply peaked as is predicted
by numerical simulations [35], the merger may remove the outer parts of the
cooling flow but not the innermost regions. Thus, the survival and size of
cool cores in merging clusters can provide evidence on whether clusters have
sharply peaked potentials [26].

12.2 Cold Fronts

One of the more dramatic early discoveries with the Chandra X-ray Obser-
vatory was the presence of very sharp surface brightness discontinuities in
merging clusters of galaxies. A pair of such discontinuities were first seen in
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the public science verification data on the Abell 2142 cluster [28]. Initially, it
seemed likely that these were merger shocks. However, temperature measure-
ments showed that this was not the case. The high X-ray surface brightness
regions were both dense and cool; thus, the gas in these regions had a lower
specific entropy than the gas in the less dense regions. The lack of a pressure
jump and the incorrect sign of the temperature and entropy variations showed
that these features could not be shocks [28]. Instead, they appear to be contact
discontinuities between hot, diffuse gas and a cloud of colder, denser gas [28].
In [47], these contact discontinuities were named “cold fronts.” Reference [28]
argues that the source of the cold clouds are the cooling cores of one or both
of merging subclusters. As noted above, cooling flows do appear to be able to
partially survive in mergers, at least for some period. Subsequently, cold fronts
have been observed in a number of other clusters; for an extensive review of
the observations of these cold fronts, see [14].

Kinematics of Cold Fronts

As discussed extensively in [47], the variation in the density, pressure, and
temperature of the gas in a cold front can be used to determine the relative
velocity of cold core. This technique is analogous to that for merger shocks
discussed above (47) and (48). The geometry is illustrated in Fig. 2, which is
drawn in the rest frame of the cold core. We assume that the cold core has
a smoothly curved, blunt front edge. The normal component of the flow of
hot gas past the surface of the cold core will be zero. There will be at least
one point where the flow is perpendicular to the surface of the cold core, and
the flow velocity of the hot gas will be zero at this stagnation point (“st”
in Fig. 2). Far upstream, the flow of the hot gas will be undisturbed at the
velocity of the cold core relative to the hotter gas, v1. Let cs1 be the sound
speed in this upstream gas, and M1 ≡ v1/cs1 be the Mach number of the
motion of the cold core into the upstream gas. If M1 > 1, a bow shock will
be located ahead of the cold front.

The ratio of the pressure at the stagnation point to that far upstream is
given by [20]

Pst

P1
=

⎧⎨
⎩

(
1 + γ−1

2 M2
1

) γ
γ−1 , M1 ≤ 1

M2
1

(
γ+1

2

) γ+1
γ−1

(
γ − γ−1

2M2
1

)− 1
γ−1

, M1 > 1 .
(52)

The ratio (Pst/P1) increases continuously and monotonically with M1. Thus,
in principle, measurements of P1 and Pst in the hot gas could be used to
determine M1. The pressures would be determined from X-ray spectra and
images. In practice, the emissivity of the hot gas near the stagnation point is
likely to be small. However, the pressure is continuous across the cold front,
so the stagnation pressure can be determined just inside of the cold core,
where the X-ray emissivity is likely to be much higher. Once M1 has been
determined, the velocity of the encounter is given by v1 = M1cs1.
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1 2

cool, dense gas

bowshock?

hot, diffuse gas

st

Cold Front

Fig. 2. A schematic diagram of flow around a “cold front” in a cluster merger. The
heavy solid arc at the right represents the contact discontinuity between the cold,
dense cold core gas, and the hotter, more diffuse gas from the outer regions of the
other cluster. The cold core is moving toward the left relative to the hotter gas. The
narrow solid lines are streamlines of the flow of the hotter gas around the cold core.
The region labelled “1” represent the upstream, undisturbed hot gas. If the cold
front is moving transonically (M1 > 1), then the cold front will be preceded by a
bow shock, which is shown as a dashed arc. The stagnation point, where the relative
velocity of the cooler dense gas and hotter diffuse gas is zero, is marked “st”

If the motion of the cold core is transonic (M1 > 1), one can also determine
the velocity from the temperature and/or density jump at the bow shock (47)
and (48). If the bow shock can be traced to a large transverse distance and
forms a cone, the opening angle of this Mach cone corresponds to the Mach
angle, θM ≡ csc−1(M1). However, variations in the cluster gas temperature
may lead to distortions in this shape.

The distance between the stagnation point and the closest point on the
bow shock (the shock “stand-off” distance ds) can also be used to estimate the
Mach number of the motion of the cold front [47]. The ratio of ds to the radius
of curvature of the cold front Rcf depends on the Mach number M1 and on
the shape of the cold front. Figure 3 shows the values of ds/Rcf as a function
of (M2

1 − 1)−1 for a spherical cold front [41]. Although there is no simple
analytic expression for the stand-off distance which applies to all shapes of
objects, a fairly general approximate method to calculate ds has been given
by [34]. and some simple approximate expressions exist for a number of simple
geometries. The stand-off distance increases as the Mach number approaches
unity; thus, this method is, in some ways, a very sensitive diagnostic for the
Mach number for the low values expected in cluster mergers. On the other
hand, the stand-off distance also depends strongly on the shape of the cold
front as the Mach number decreases. The application of this diagnostic to
observed clusters is strongly affected by projection effects. Because the radius
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Fig. 3. The ratio of the stand-off distance of the bow shock ds to the radius of
curvature Rcf of the stagnation region of the cold front, as a function of 1/(M2

1−1),
where M1 is the Mach number. This is for a spherical cold front and γ = 5/3

of curvature of the bow shock is usually greater than that of the cold front,
projection effects will generally cause ds to be overestimated and M1 to be
underestimated. Projection effects also make the true shape of the cold front
uncertain.

These techniques have been used to determine the merger velocities from
cold fronts in Abell 3667 [47], RXJ1720.1+2638 [31], and Abell 85 [19]. The
most spectacular application is the “Bullet Cluster” 1E0657-56 [7, 29, 30],
which contains a very high Mach number merger.

Width of Cold Fronts

One remarkable aspect of the cold fronts observed with the Chandra Obser-
vatory in several clusters is their sharpness. In Abell 3667, the temperature
changes by about a factor of two across the cold front [47], and the accom-
panying change in the X-ray surface brightness occurs in a region which is
narrower than 2 kpc [47]. This is less than the mean-free-path of electrons in
this region. The existence of this very steep temperature gradient and similar
results in other merging clusters with cold fronts requires that thermal con-
duction be suppressed by a large factor [11, 46, 47] relative to the classical
value in an unmagnetized plasma (14) [43]. It is likely that this suppression is
due to the effects of the intracluster magnetic field. It is uncertain at this point
whether this is due to a generally tangled magnetic field (in which case, heat
conduction might be suppressed throughout clusters), or due to a tangential
magnetic field specific to the tangential flow at the cold front [46].
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Because of the tangential shear flow at the cold front (Fig. 2), the front
should be disturbed and broadened by the Kelvin–Helmholtz (K–H) instabil-
ity. Reference [46] argues that the instability is suppressed by a tangential
magnetic field, which is itself generated by the tangential flow. This suppres-
sion requires that the magnetic pressure PB be a non-trivial fraction of the gas
pressure P in this regions, PB ∼> 0.1P . The required magnetic field strength
in Abell 3667 is B ∼ 10 μG. Alternatively, cold fronts might be stabilized by
gravity [15] or acceleration along the front [6].
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1 General Properties of Clusters

Clusters of galaxies might well have been called something else, if they had
been seen first in other than visible light, since the optically luminous galaxies
make up only a small fraction (<5%) of the cluster mass. In clusters, most of
the baryons are in the hot intracluster gas and most of the matter is in the
form of dark matter.

The distribution of galaxies on the sky shows that galaxies are often con-
centrated in groups or clusters. In the 1930’s Zwicky [145] measured the veloc-
ities of galaxies in the Coma cluster and used the virial theorem to estimate
the total amount of mass in the cluster. He determined a total cluster mass of
about 400 times the mass he estimated by adding up the mass in all the Coma
galaxies. Since the galaxies themselves did not provide enough matter, Zwicky
postulated that “missing mass” or dark matter must be present in the cluster
to gravitationally bind the galaxies. Around 1970, a new cluster component,
a diffuse hot gas, was found both from the observations of tailed radio sources
in Perseus [122] and from Uhuru observations that showed the X-ray emission
from the Coma, Perseus, and Virgo clusters was spatially extended [49, 59, 76].

Today we know that clusters of galaxies are complex, multi-component
systems with hundreds of galaxies, a hot intracluster medium, radio plasmas
and dark matter evolving in tightly coupled ways. Clusters are the largest
gravitationally bound systems in the Universe with total masses of about
1014–1015 M�. Since clusters form from large volumes (∼20 Mpc radius),
their mass components are representative of the Universe as a whole. Most
of the matter in clusters is dark matter, with only about 15% of the matter
being baryonic. Most of the baryons are in the form of hot X-ray gas, with
the stars in galaxies contributing only about 20% of the baryonic mass in rich
clusters, and up to half the baryonic mass in groups.

Clusters of galaxies are very bright in X-rays, with luminosities as high
as several 1045 ergs s−1, which allows them to be observed to relatively high
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redshifts. Their X-ray emission is due primarily to thermal bremsstrahlung
emission from the hot gas, along with line emission. The intracluster medium
(ICM) is heated primarily through shocks produced as matter falls into the
deep gravitational potential of the cluster. If clusters form through simple
gravitational collapse, then their bolometric luminosity should scale as the
square of the gas temperature (e.g. [73, 74]). However, observations have long
shown that the X-ray luminosity increases as the cube of the temperature, and
even more steeply for poor clusters or groups, due to the increased entropy
of the gas caused by non-gravitational processes [62, 112]. The additional gas
heating, beyond that expected from gravitational collapse alone, is at the level
of 1–3 keV per particle and is too large to be supplied by supernovae, but may
be supplied by active galactic nuclei (AGN).

As the Chandra X-ray image of the rich cluster A1413 shows (Fig. 1),
the hot gas fills the gravitational well of the cluster and often is peaked on
a central bright galaxy. A massive galaxy lies at the centers of many clusters
and groups and at the center of this galaxy lies a supermassive black hole.
The high gas density in the cluster cores results in gas cooling and accreting
onto the supermassive black hole. This accretion results in AGN outbursts
that reheat the cooling gas and substantially reduce the amount of cool gas
available for star formation and for accretion. This cyclical process of gas
cooling and feedback is described in Sect. 2.

In addition to using the X-ray imaging to study the morphology and struc-
ture of the cluster, for symmetric clusters, we can measure the density dis-
tribution of the hot gas directly from the X-ray surface brightness (Fig. 2).
The hot gas is generally in hydrostatic equilibrium and thus traces the gravi-
tational potential of the cluster. The cluster gas temperature and heavy ele-

2’

(a) (b)

Fig. 1. (a) The Chandra image of the cluster A1413 (z = 0.14) shows that the
X-ray emission is strongly peaked in the central region. (b) Isointensity contours
from the X-ray image are superposed on the optical image. A cD galaxy lies at the
cluster center
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Fig. 2. The X-ray surface brightness profile for A1413 is centrally peaked

ment abundances can be measured through X-ray spectroscopy (see Fig. 3).
By measuring the temperature and density distributions in the gas, one can
map the total cluster mass which is dominated by dark matter (see Fabricant
et al. [45] for an early application of this technique to map the dark matter
around M87 in the Virgo cluster).

At the high gas temperatures of the ICM (107–108 K), the gas in nearly
fully ionized. Hydrogen and helium are fully stripped of their electrons, while
heavier elements retain only a few electrons. The hot ICM is not pristine pri-
mordial material, but has been enriched in heavy elements. Outside the cluster
cores, the heavy element abundance in the ICM is typically about 0.25 solar,
while in the dense cluster cores, particularly around a central bright galaxy,

0
0

2

4

6

0

(a)

5 10 15 20

r, arcmin

0 5 10 15 20

r, arcmin

500 1000

0.5 r180

r, kpc

T
, k

eV

1500 0
0

0.5

1

1.5

500

Z
 /Z

1000
r, kpc

1500

(b)

Fig. 3. (a) The gas temperature often decreases in the cluster core and in the cluster
outskirts as shown for A133. (b) The heavy element abundance generally increases
toward the cluster center for clusters with a central cD galaxy [137]
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abundances can increase to roughly solar (see Fig. 3). It was the detection of
Fe Kα emission at 6.5 keV in the X-ray spectrum of the Perseus cluster that
firmly established that cluster X-ray emission arises from hot gas [96].

1.1 The Epoch of Cluster Formation

Until the 1970’s, clusters were generally thought to be dynamically relaxed
systems that were evolving slowly after an initial, short-lived episode of violent
relaxation. However, in 1972, Gunn and Gott argued that, while the dynamical
timescale (τ ∼ Gρ−1/2) for the Coma cluster was comfortably less than the
Hubble time, the dynamical timescale in other less dense clusters would be
comparable to or longer than the age of the Universe. Thus they concluded
that “The present is the epoch of cluster formation” [58].

Launched in 1978, the Einstein Observatory with its X-ray imaging ca-
pability showed that nearly half of all rich clusters had significant substruc-
tures reflecting complex, unrelaxed gravitational potentials [52, 68, 69]. The
Einstein images, as shown in Fig. 4, changed our view of clusters from one in
which they were virially relaxed systems to one in which even many present
epoch clusters are undergoing subcluster mergers.

Today the generally accepted view is that structure in the Universe grows
through the gravitational amplification of small scale instabilities in the early
Universe. Large scale filaments containing gas and galaxies form around voids.
Rich clusters form at the intersections of these filaments and grow through the
accretion of galaxies and groups that fall along the filaments into the deeper
cluster potential. A beautiful example of this is the 4 Mpc long filament of
X-ray bright gas and groups apparently falling into the A85 cluster [32–34].
Thus clusters form through the mergers of small systems, a process called
hierarchical clustering. Much of the accretion is expected to occur at very large
radii in clusters and has not been directly observed. However both Chandra
and XMM-Newton have provided significant insight into the physical processes
associated with major mergers, the mergers of nearly equal mass components
involving kinetic energies as large as ∼1064 ergs. Both supersonic, as well as
sound speed, cluster mergers are discussed in Sect. 3.

If cluster dynamics are governed primarily by the gravity of the dark mat-
ter, then relaxed clusters should have similar gas density and temperature
profiles. Using ASCA observations of nearby clusters, Markevitch et. al. found
that the gas temperature profiles for symmetric, relaxed clusters were remark-
ably similar when the temperature is plotted against the cluster radius in units
of the virial radius [85] (see [26] for similar BEPPOSAX results). Recently,
Vikhlinin et al. and Piffaretti et al. measured the temperature profiles to large
radii for samples of nearby relaxed clusters observed with Chandra [137] and
XMM-Newton [110]. As Fig. 5 shows, outside the central cluster core where
cooling and AGN feedback affect the gas temperature, clusters exhibit a “uni-
versal” temperature profile. Comparing cluster density profiles, Vikhlinin et
al. also found that, outside the cluster core, the gas and the total density
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Fig. 4. Each panel shows isointensity contours of the cluster’s X-ray emission su-
perposed on an optical image from Einstein observations (see Jones & Forman [70]
for details). The clusters illustrate the variety of structures and morphologies seen
through their X-ray emission

profiles of hot (kT > 4 keV) clusters are similar, when the densities are plot-
ted against the radius measured in units of r/r180 (see Fig. 5; r180 is the
radius within which the mean density is 180 times the critical density). The
total density profile agrees with the NFW profile [97, 98]. Thus at the present
epoch, outside the cores, hot relaxed clusters have “universal” temperature
and density profiles and appear self-similar.

Since structure grows hierarchically, clusters of galaxies, as the most mas-
sive, quasi-relaxed systems, are dynamically young and “remember” the con-
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Fig. 5. (a) When plotted in units of r180, the ICM in the outer regions of clusters
has a similar temperature profile. (b) When plotted in units of r500, the gas and
total mass profiles for hot clusters are similar in the outer regions [137]

ditions from which they formed. Thus they are sensitive to the underlying
cosmological parameters. Beginning with the Einstein observations, there was
strong indication that the most luminous clusters were undergoing significant
evolution at modest redshifts (z ∼ 0.6), such that there was a substantial
deficit of X-ray luminous clusters at high redshifts [64]. Large ROSAT sur-
veys confirmed this deficit [95, 131]. Chandra and XMM-Newton observations
also show that clusters at high redshifts had higher gas densities and were
hotter and more X-ray luminous for a given mass than present epoch clus-
ters [77, 135]. Cluster observations, particularly Chandra observations of dis-
tant clusters, place strong constraints on the cosmological parameters Ωm, ΩΛ

and σ8 as well as the equation of state for dark energy. The use of clusters to
study the cosmology of the Universe is discussed in Sect. 4.

Cluster environments also influence the cluster galaxies. It has long been
known that the cores of rich clusters are predominantly populated by early
type galaxies–ellipticals and lenticulars–that show little evidence of recent
star formation, while late type galaxies–spirals and irregulars–are found in less
dense environments [29, 103]. In this morphology-density relation, low density
regions (filaments and the field) have mostly blue, star-forming spirals, as well
as galaxies with more dust, and higher numbers of AGN. By contrast in high
density regions (rich clusters and dense groups), there are mostly galaxies with
little ongoing star formation, red ellipticals and lenticulars and some “anemic”
spirals. Work by Kauffmann et al. [75] shows high star formation rates for most
disks and some bulges in low density regions and low star formation rates for
most bulges and roughly half the disks in high density regions.

A number of physical mechanisms and processes probably act in concert
to deplete the gas in galaxies and regulate their star formation. When galaxies
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form in low density regimes, the cooling, star forming gas is not shock heated,
while in high density systems, the intracluster is shock heated to virial tem-
peratures, after which very little of this gas will cool to form stars. In dense
environments galaxy mergers, galaxy harassment due to high velocity galaxy
encounters and tidal interactions with the cluster potential can truncate or
destroy disks (see Machacek et al. [81] for a discussion of the interaction of
the Virgo spiral NGC4438 with its companion galaxy NGC4435). Interactions
of the galaxy interstellar medium with the hot gas in the potential well of the
group or cluster can strip the galaxy of its gas. The hot ICM also can evapo-
rate and compress the cooler gas in the cores of elliptical galaxies. In Sect. 3,
we describe X-ray observations of the stripping of the interstellar medium for
both elliptical and spiral galaxies in groups and in clusters. We also describe
the small cool coronae that have been found in the cores of several massive
ellipticals in rich clusters.

2 Cooling and Feedback in Cluster Cores

Early results from Chandra showed that the central regions of cooling flow
clusters, as well as early type galaxies, are morphologically very complex.
Observations of X-ray cavities and weak shocks demonstrate the impact of
the central AGN, with its associated radio emission, on the hot cluster gas.
The X-ray, as well as the radio, observations show not only the current state
of the AGN, but the reflections of those outbursts in the surrounding gas show
the history of AGN outbursts.

In many clusters, the X-ray emission is strongly peaked at the cluster
center on a bright cD galaxy (see 1). From the earliest X-ray observations,
Fabian and Nulsen, as well as Cowie and Binney, realized that “Cooling gas
in the cores of clusters can accrete at significant rates onto slow-moving cen-
tral galaxies” [22, 41]. Einstein and ROSAT imaging observations showed the
dramatic contrast in cluster cores between the very peaked surface brightness
distribution in cooling flow clusters and the flatter distribution in non-cooling
flow clusters. These imaging observations showed that ∼70% of clusters were
centrally peaked, with central gas densities as large as 0.1 cm−3. Thus the ra-
diative cooling times of the gas in their cores were as short as a few 108 years,
much less than the age of the cluster. If the dense X-ray gas in the core is not
reheated, it will cool and in order to maintain pressure balance (hydrostatic
equilibrium) with the hotter cluster gas outside the core, this cool gas will be
compressed by the overlying cluster gas and flow toward the central galaxy at
rates up to 100–1000 solar masses per year (e.g. [42]).

Although spectroscopic measurements from Einstein, ROSAT and ASCA
found that these “cooling flow” clusters had cooler X-ray gas in their cores,
the repository of the expected large amounts of cold gas in the form of HI
or recent star formation was not found. Instead star formation and gas at
temperatures of about 105.5 K seen in FUSE observations of clusters [102]
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implied cooling flow rates at only 10–20% of the standard cooling flow model.
The question of the fate of the cooling gas was finally resolved through the
XMM-Newton high resolution spectroscopy that did not show the strong iron
and oxygen X-ray emission lines expected as gas cools through about 107

K [107, 109], and through the Chandra spatially resolved spectra that showed
that the cluster gas in the core cools only to a temperature of about 1/3 of
the outer gas temperature (e.g. [25]). Since the cooling time depends on the
gas temperature and density, it is amazing that just when the coolest, densest
gas in cluster cores should be cooling the most rapidly, instead most of the
gas appears not to be cooling, so must be reheated.

Since recent star formation in cD galaxies and cold gas were seen only at
low levels, compared to those expected from the standard cooling flow model,
many mechanisms to reheat the cooling gas have been proposed. These in-
clude cluster-subcluster mergers which produce vast amounts of energy (∼1064

ergs). However although cooling cores are not found in merging systems, the
irregular time intervals between merger events makes cluster mergers an unre-
liable source of reheating the cooling gas in cluster cores. The large amounts
of hot gas in the outskirts of clusters has long made thermal conduction a
popular method of reheating cluster cores (e.g. [23, 144]). However, while
conduction may be able to provide some energy to the outer regions of the
cores, in the most centrally peaked cooling flow clusters, conduction is not ef-
fective in transporting energy to the cluster center. Finally, reheating the gas
by AGN, particularly for clusters with radio emission, had long been suggested
(e.g. [8, 10, 119, 130]). New Chandra observations show that jets, bubbles and
shocks produced by periodic outbursts from the supermassive black hole in
the central cluster galaxy, along with possible gas “sloshing” also driven by
the central AGN, can reheat the surrounding gas in the cluster center. X-ray
observations of the effects of AGN outbursts on the cluster gas have radically
changed our views on cooling flows. The cooling and feedback process that is
observed in present epoch clusters may be the same process that leads to a
the observed cutoff at the bright end of the galaxy luminosity function.

The sections below review first the X-ray observations of the Perseus and
M87 clusters, then Hydra A, Hercules A and MS0735.6+7421, three clusters
which show very energetic AGN outbursts, and finally the impact of outbursts
on the hot interstellar medium in early type galaxies.

2.1 Cavities and Shocks in the Perseus Intracluster Gas

As the brightest cluster in the X-ray sky, Perseus has been observed by every
X-ray mission from Uhuru to Chandra and XMM-Newton. Figure 6 shows
the deep (900 ksec) Chandra observation [44]. Two X-ray cavities located
north and south of the central giant galaxy NGC1275 and inflated by radio
jets were first recognized in the ROSAT images [11]. As is generally true for
the bright X-ray rims surrounding radio lobes, the gas around the cavities is
cooler than the surrounding ICM. North of the northern inner lobe is a sharp
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Fig. 6. (a) The 900 ksec Chandra image of Perseus shows the bright nucleus centered
on NGC1275, X-ray cavities to the north and south, dark regions of absorbing gas
stripped from an infalling galaxy, outer ghost cavities and sharp surface brightness
edges marking weak shocks [44]. (b) Following the analysis procedure of Fabian
et al., the result of subtracting a 10′′ smoothed image from the unsmoothed data
shows multiple ripples in the gas. These are especially prominent northeast of the
northern cavity [44]

surface brightness edge and corresponding pressure jump in the gas, which
Fabian et al. recognized as a shock [43]. Additional ripples at larger radii
also can be seen in the Chandra image. Figure 6, in which the Chandra image
smoothed with a 10′′ gaussian is subtracted from an unsmoothed image, shows
nearly regularly spaced ripples in the surface brightness distribution that also
correspond to small variations in the density and pressure profiles [44]. If the
ripples are the result of earlier nuclear outbursts and move at the sound speed
(∼ 1200 km s−1 in 5 keV gas), their typical separation of 11 kpc corresponds
to an outburst frequency of 107 years. As Fabian et al. noted, if these weak
shocks deposit half of their energy in the surrounding gas within the central 50
kpc cooling region, this energy input will balance that lost through radiative
cooling [44]. In addition to the central cavities, at larger radii the Chandra
image (Fig. 6) shows additional cavities or “ghost bubbles” which have not
been detected in the radio [43]. These cavities could have been produced by
earlier nuclear outbursts.

The hot intracluster gas in Perseus shows an unusual spiral structure as
seen in the ROSAT [16] and XMM-Newton images [18], as well as in the deep
Chandra observations [44]. This structure may result from “sloshing” of the
gas in the core due to the past merger history of the cluster or may have been
caused by the passage of a subcluster through the core [4].
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2.2 AGN Outbursts in M87

At a distance of only 16 Mpc, M87 (NGC4486), the giant elliptical at the
center of the Virgo cluster, provides a unique laboratory to study the interac-
tions of the hot intracluster gas with the energy generated by the 3× 109 M�
black hole at its core. Like many central cluster galaxies, M87 has long been
considered a classic example of a “cooling flow” system (e.g. [13, 128]). In
fact, using radio studies, Owen et al. pioneered the idea that the mechani-
cal energy produced by the SMBH was more than sufficient to compensate
for the energy radiated in X-rays [104]. Chandra, XMM-Newton and ROSAT
HRI observations of M87, as well as radio VLA maps, show rich structures on
many angular scales, including a bright nucleus, knots in the jet, jet cavities,
radio and X-ray “arms” and weak shocks in the hot gas. As described in this
chapter (see also Forman et al. [53]), X-ray and radio observations of M87 are
illuminating the energy input mechanisms from the AGN into the cooling gas.

The Chandra image (Fig. 7) shows a bright central region, X-ray arms that
correspond to those seen in the radio image [104], and outer rings or shells
that Forman et al. interpret as shocks [53]. On the largest scales, the VLA
map (Fig. 11; also see [104]) shows outer lobes or “pancakes” which formed
108 years ago and, although these are the oldest visible radio structures, they
require the continual injection of energy [104]. M87 also has bright radio arms
to the East and Southwest, and in the core lies the famous jet (see Fig. 8).
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Fig. 7. (a) The Chandra image of M87 shows a bright central region with X-ray
arms to the east and southwest and two sharp surface brightness edges. (b) The
M87 image with a model for the gas distribution subtracted from the X-ray data.
The (data-model) is then divided by the model [53]
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Fig. 8. (a) The Chandra image of the core of M87 shows the nucleus and jet as well
as bright rims around the jet and counterjet cavities. Small cavities are seen at the
base of the eastern arm. (b) Labeled X-ray image of the core of M87. Small cavities
are labeled “bubble” and “bud” [53]

The central region of M87, containing the jet and inner radio lobes (the
cocoon region), originated in an episode of recent AGN activity. As shown in
Fig. 8, the central core is very complex. At the center is the jet and around it
an X-ray cavity. An X-ray cavity also surrounds the region of the counter jet.
There is radio emission and an X-ray cavity associated with another bubble
southeast of the nucleus that is not aligned with the jet. Several additional
bubbles can be seen in the Eastern arm. Each of these bubbles is about 1 kpc in
radius. The composite image of the X-ray and radio emission (Fig. 11) shows
that the X-ray cavities surrounding the jet and counterjet are filled with radio
emitting plasma. Assuming subsonic expansion for the radio plasma, the age
of these lobes is about 1.7× 106 years. The energy required to remove the gas
from these cavities is about 1056 ergs.

Outside the core, the prominent features are the X-ray arms and two shells
or rings of emission (see Fig. 7). The inner shell at 14 kpc (3′) can be seen
nearly all the way around M87, while the 17 kpc shell is most prominent
to the northwest. To better examine the structure in the gas, Forman et al.
modeled M87’s overall halo of X-ray emission with a smooth model and sub-
tracted that from the Chandra image. Figure 7(right) shows the deviations
from the smooth model–the X-ray arms and 14 and 17 kpc arcs are promi-
nent. The sharpness of the shells, as well as the completeness of the 14 kpc
ring, suggests they are due to shocks likely driven by the initial rapid expan-
sion of the core radio lobes. Both X-ray arms brighten at about the radii of
the shocks, suggesting that they lie nearly in the plane of the sky. Beyond
the radii of the shocks, the X-ray arms curl and each one splits into two
filaments.

The radial surface brightness and temperature profiles across the X-ray
arcs can be modeled as shocks [53]. An instantaneous outburst with an en-



42 C. Jones et al.

ergy of nearly 1058 ergs occurring 107 years ago provides a good match to the
observations of the 14 kpc ring. The shock is mildly supersonic. The outer par-
tial ring would have been caused by an explosion of similar energy occurring
about 4 million years earlier.

Shocks appear to be a significant channel for energy from the AGN to
reheat the cooling gas. But shocks are not the whole story. Bubbles rising
through the arms also play a role in heating and transporting cool gas. The
amount of energy associated with the observed outbursts will balance the
energy lost through radiative cooling, if outbursts occur every 107 years.

Churazov et al. modeled the structure in the arms as buoyant bubbles.
Figure 9 shows a schematic of the three episodes of bubbles corresponding to
AGN outbursts that occurred 106–108 years ago [17]. Radio bubbles, generated
in the core, rise rapidly and lose about half their energy through adiabatic
expansion. In Fig. 10, the panels show the evolution of the gas temperature
in and around the bubble, since the AGN outburst. Initially a hot bubble
is created by the AGN. As it rises buoyantly through the atmosphere, it
entrains cool gas behind it. This rising, expanding gas produces the arms seen
in the radio and X-ray observations. Several solar masses of material can be
uplifted this way. In this model, the arms should be cool. In fact the X-ray gas
temperatures of the arms has been found to be cooler than the surrounding
gas from XMM-Newton observations [5].

‘pancakes’

uplifted thermal gas to observer

inner lobes

Fig. 9. A schematic of the Churazov et al. model for buoyant bubbles in the core,
arms and outer lobes of M87, which were produced by three episodes of AGN out-
bursts with timescales of 106–108 years [17]
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Fig. 10. A simulation of a buoyant bubble rising in the atmosphere of M87 shows
the evolution in the temperature with time [17]. Dark blue is the coolest gas. The
first panel shows the hot bubble created by the AGN. As the bubble rises, it expands
and entrains cool gas behind it. The size of each panel is 20 × 40 kpc

As can be seen in Fig. 11, the X-ray emission from M87’s arms appears
quite different. The eastern arm begins with bubbles and ends in the radio
“ear” that lies between the 14 and 17 kpc shocks. Simulations by Ensslin and
Bruggen have shown that a shock passing through a bubble of relativistic
plasma can produce this strong vorticity [37]. By contrast the southwestern
arm begins as a narrow filament (10′′ or 0.8 kpc at its narrowest) and shows
little correlation with the radio emission. Magnetic tension, as well as thermal
pressure from the surrounding gas, could confine the cooler gas in the arm.
As shown by the composite X-ray and radio image (Fig. 11), the southwest
radio arm could envelop the X-ray filament. This image also emphasizes the
complex nature of the gas emission and of the radio and X-ray interaction.

2.3 Powerful Outbursts in the Hydra A, Hercules A
and MS0735.6+7421 Clusters

Chandra images show X-ray cavities with radii of a few to several tens of
kiloparsecs in the hot gas of many clusters and groups of galaxies, as illustrated
in the earlier sections by Perseus and M87. Perseus and M87 show the effects of
weak shocks in their central 20–50 kpc cores. By contrast, the X-ray emission
from the three clusters Hydra A, Hercules A and MS0735.6+7421 shows giant
cavities, along with a single large shock with a radius of 160–300 kpc.

At a redshift z = 0.22, the optically poor Zwicky cluster MS0735.6+7421
has an X-ray luminosity of 8 × 1044 ergs s−1 [12], a central cD galaxy with an
optical emission nebula extending 20 kpc in its core [28] and a radio source
(4C 74.13) extending 550 kpc in diameter [94]. As McNamara et al. found
from Chandra observations (see Fig. 12), the X-ray cavities corresponding to
the radio lobes are huge, 200 kpc in diameter, and surrounding these cavities,
is a cocoon with a sharp X-ray surface brightness edge marking the location
of the shock. McNamara et al. estimate an age and required energy for the



44 C. Jones et al.

Fig. 11. The X-ray (red) and radio (cyan) image of M87 shows the complex inter-
action of the X-ray gas and radio plasma and the striking differences between the
eastern and southwestern arms. The outlined red region of the X-ray emission is 8′

by 16′ [53]

shock of 108 years and 5.7 × 1061 ergs. The pV work required to inflate
each giant cavity is ∼ 1061 ergs. The resulting enthalpy (∼ 8 × 1061 ergs)
is close to the energy estimated for the shock. Unlike most of the cavities
seen in other systems, the faint X-ray emission from these cavities is hotter
than the surrounding cluster gas, suggesting that the gas around the cavities
was heated by the shock. Inverse Compton emission from the radio also may
contribute to the hard X-ray emission from the cavities.

As shown in Fig. 13, Chandra observations of the Hydra A cluster show
a pair of X-ray cavities associated with 1.4 GHz radio lobes extending about
40 kpc from the nucleus, a second pair of cavities lying about 100 kpc from the
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(a) (b)

Fig. 12. (a) The Chandra image of MS0735.6+7421 with the radio contours super-
posed. (b) The optical image of MS0736.6+7421 showing a cD galaxy in an optically
poor cluster, with contours of radio emission superposed [94]

cluster center and an edge in the surface brightness distribution 200–300 kpc
from the center [25, 93, 100]. The surface brightness edge is most prominent
northeast of the nucleus, where the shock is farther from the cluster center
and the pressure jump is greater, resulting in a stronger shock. As Nulsen
et al. noted, the difference in the eastern extension of the shock compared
to the western extension is more likely due to differences in the large scale
gas density in the cluster and not to asymmetries in the outburst. Based on
modeling the western surface brightness distribution, Nulsen et al. find an age
for the shock of about 108 years and an energy of nearly 1061 ergs. The mean

(a) (b)

Fig. 13. (a) The Chandra image of Hydra A shows inner cavities, larger outer
cavities and, at large radii from the cluster center, an edge in the surface brightness
distribution. (b) Radio contours superposed on the X-ray image [100]



46 C. Jones et al.

mechanical power of the outburst is ∼ 2 × 1045 ergs s−1, typical of quasar
luminosities.

A third powerful nuclear outburst has been found in the Hercules A cluster
[101]. The Chandra image shows a bright X-ray region extending ∼160 kpc,
similar in size to the radio lobes. A sharp surface brightness edge surrounding
this region marks the shock front location. Through modeling the surface
brightness distribution, Nulsen et al. measure a Mach number of 1.65 for the
shock and determine that it was produced 6 × 107 years ago by an outburst
with an energy of 3× 1061 ergs. Of the three clusters known to have powerful
outbursts, Hercules A has the strongest shock.

Although all nuclear outbursts are likely powered by accretion onto a
supermassive black hole lying in the core of the central giant galaxy, as
McNamara et al. emphasize, the minimum accreted mass required to pro-
duce the shock energy seen in MS0735.6+7421, assuming a mass to energy
conversion of 0.1 Mc2, is ∼ 3 × 108M� [94]. The three large outbursts that
have been found all imply significant growth in the mass of their supermassive
black holes in recent times. If the Magorrian relation [86] between the galaxy
bulge size and the mass of the black hole is tightly maintained, the stellar mass
of the bulge must grow in concert with the black hole, presumably through
star formation from the reduced cooling flow.

2.4 Nuclear Outbursts in Elliptical Galaxies

While the outbursts in clusters can affect the dense atmospheres in the cores
of clusters, nuclear outbursts can have even more dramatic effects on the
hot ISM in individual elliptical galaxies. Centaurus A and M84, an elliptical
galaxy in the Virgo cluster, are two of the best studied examples of nearby
galaxies with radio emission. Their Chandra and XMM-Newton images are
shown in Figs. 14 and 15.

At a distance of only 3.4 Mpc, Cen A is our nearest active galactic nucleus,
hosting a low-power FRI radio source,1 as well as the brightest “steady” ex-
tragalactic Gamma-ray source. Cen A appears as an elliptical galaxy crossed
by a dust lane, believed to be the result of a merger with a small spiral
galaxy about 109 years ago. Radio observations show a nucleus, a subarcsec-
ond jet and counter jet, a predominantly one-sided jet on kiloparsec scales,
inner lobes, a middle lobe and diffuse emission on scales up to 250 kpc, which
together provide strong evidence for repeated nuclear outbursts (see Israel for
a review [67]). The Chandra X-ray image of Cen A (Fig. 14) shows the nu-
cleus and jet, a warm (0.29 keV) interstellar medium, hundreds of point X-ray
sources, and an X-ray shell surrounding the southern inner radio lobe [78, 79].

1 In the standard model for FRI radio sources, a supersonic jet from the nucleus
forms a radio lobe, while in the more powerful FRII sources, the lobes are ex-
panding supersonically. If the radio lobe has a leading bow shock, the surrounding
X-ray gas will be shocked and heated by the passage of the bow shock.
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Fig. 14. (a) The Chandra image of Centaurus A shows emission from the nucleus
and jet, the southern radio lobe, the interstellar medium and hundreds of low mass X-
ray binaries. (b) Radio contours superposed on the smoothed XMM-Newton image

The Cen A shell has a mass of 3 ×106 M� and is likely interstellar material
swept up by the southern lobe as it expands. This is the best known example
of a shell of gas compressed and shock heated by the supersonic expansion of a
radio lobe. As Kraft et al. measured, the hot gas in the X-ray shell is ten times
hotter and twelve times denser than the surrounding interstellar gas. Thus the
thermal pressure in the shell is about 100 times the pressure in the surrounding
medium. If the pressure in the shell that exceeds the ISM pressure is balanced
by the ram pressure of the expanding lobe, this highly over-pressured shell can

M84

11 arcmin

(a) (b)

Fig. 15. (a) The Chandra image of M84 with the FIRST radio contours superposed.
Cool X-ray rims outline the radio lobes. (b) The FIRST radio image of M84
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be maintained. The required ram pressure corresponds to the shell expanding
at 2400 km s−1, equivalent to Mach 8.5. The kinetic energy in the shell is
about six times its thermal energy (∼ 4.2 × 1055 ergs) and also greater than
the thermal energy of the hot ISM within the central 15 kpc. Most of the
shell’s kinetic energy eventually should be converted into heating the ISM.
The energy in the shell would be transferred to the ISM through conduction.

M84 (NGC 4374), a luminous elliptical galaxy in the core of the Virgo
cluster hosts the radio source 3C272.1. As Finoguenov and Jones described,
the radio lobes define the structure of M84’s X-ray gas [48], as shown in
Fig. 15. Unlike Cen A, the brightest X-ray emission is seen along the sides of
the radio lobes and not at the ends where the lobes are expanding, implying
that the expansion of the radio lobes is not supersonic. As seen in Fig. 20,
M84 has a relatively small X-ray corona, compared to the elliptical galaxy
M86, as well as in comparison to other optically luminous early type galaxies.
Its small size may be due to gas being stripped from M84 as it moves through
the denser gas in the Virgo core, since it does show an X-ray tail toward
the southeast and compression of its northern radio lobe. Alternatively, the
smaller gas mass in M84’s corona may be due to the effects of past nuclear
outbursts which heated and expelled much of its interstellar medium. As stars
in the galaxy continue to shed mass, they will replenish the gas in the galaxy’s
corona.

While the presense of bright lobed radio sources in Cen A and M84 should
have suggested that the gas in these galaxies would be morphologically dis-
turbed, the general expectation for other “normal” elliptical galaxies was that
their X-ray emission would be composed of “relaxed”, symmetric, hot gaseous
coronae, punctuated with the brighter X-ray binaries distinguished as point
sources. However observations of early-type galaxies often showed X-ray cav-
ities in their interstellar gas. Examples include NGC4636 [71], NGC4472 [7],
NGC4552 [84], and NGC507 [80].

Figure 16(a) shows the Chandra image of NGC4636. The bright central
region is surrounded by arms that extend ∼ 8 kpc in a pinwheel shape. The
sharp edges along the inner edges of the arms, as well as modest increases in
gas temperature in the southwest arm are characteristics associated with a
shock. These features can be produced by a nuclear outburst that occurred
3 million years ago, with a total energy driving the shocks of 6 × 1056 ergs.
The central region of bright X-ray emission appears relatively undisturbed and
suggests that the energy input was not primarily deposited in the center, but
was transferred to larger radii, probably through jets. However, the cavities
in NGC4636, as well as those in NGC4552, are unusual in that they have not
been detected as radio lobes, although both of these ellipticals do show some
radio emission from their nuclei. In comparison to other galaxies, NGC4636
and NGC4552 had two of the most recent outbursts, suggesting that the bright
radio lobe phase may begin later than the initial expansion.

In early type galaxies, although the gas in the core has a high density and
the radiative cooling times are short, the cooling flow rates, even in the stan-
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Fig. 16. (a) The Chandra image of the elliptical galaxy NGC4636 shows 8 kpc long
X-ray arms [71]. (b) The X-ray luminosity of nuclear sources in early type galaxies
plotted against the SMBH mass estimated from the velocity dispersion [72]

dard cooling flow model, are modest, typically one solar mass per year [129].
Outbursts like those seen in NGC4636 and other early type galaxies would
need to occur only every 50 million years or so to prevent the accumulation
of large amounts of cold gas in their cores. Such galaxies would be in a shock
phase ∼10% of the time or less. In our sample of 160 early type galaxies,
we identify 26 galaxies (15% of the sample) as having X-ray cavities or jets
and thus are undergoing a current outburst that is likely to influence the
surrounding gas [72].

Figure 16(b) shows the nuclear X-ray luminosity plotted against the mass
of the SMBH, as estimated from the galaxy velocity dispersion. X-ray emis-
sion from the nucleus is detected in ∼80% of the galaxies [72]. While there
is several orders of magnitude dispersion in the nuclear luminosity, the level
of X-ray emission from SMBHs in “normal” early type galaxies is quite low,
especially compared to that seen in quasars. If one compares the central lumi-
nosity to the Eddington luminosity (generally the maximum accretion allowed
without beaming for a black hole of a given mass), one finds ratios of about
0.1 or more for quasars, while for the “normal” galaxies, the ratios are very
small (10−5–10−9). The accretion that is ongoing in these galaxies, most likely
from cooling gas, results in very modest emission. The SMBH in “normal”
galaxies are practically starving and their growth through accretion is very
modest.

In summary the energy input to reheat the gas in clusters and in galaxies
comes from two sources. The first is the mechanical energy of the lobes/cavities
that are inflated by jets from the AGN, and generally are observed as sym-
metric pairs located on opposite sides of the nucleus. The low density of the
cavity causes it to rise buoyantly in the cluster gas, while it continues to ex-
pand adiabatically. When the bubble expansion becomes less than its rate of
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ascension in the ICM, it will detach from the jet as it continues to rise. If
the jet is still active, a new bubble will form. This pattern of “effervescent”
bubbles [120] may explain the filamentary structure seen in the eastern arm
of M87 [54]. Birzan et al. found that, in nine of the 18 systems they studied,
which included 16 clusters, one group and one galaxy, the mechanical energy
input was sufficient to balance cooling [9]. Recently Dunn et al. reported X-ray
cavities in twelve of seventeen clusters with cooling cores [31].

The second mechanism to reheat the gas is through the generation of
shocks by the initial relativistic expansion of the radio lobes as described above
for Perseus, M87, Hydra A, MS0735.6+7421 and Hercules A. The expanding
radio jets drive a roughly spherical shock into the surrounding gas [60]. Ob-
serving the effects of the weak shocks in the X-ray gas requires deep X-ray
observations, so that the number of clusters in which these large scale shocks
have been found is far fewer than the number of systems with X-ray cavities.

While the X-ray rims around the cavities are cooler than the surrounding
gas in most clusters and galaxies, in a few systems (e.g. Cen A, NGC4636,
NGC4552 and Cygnus A), the X-ray emission around the cavities has been
shock heated by the supersonic expansion of the lobes and is hotter than
the surrounding medium and therefore can heat the surrounding gas through
conduction and mixing.

It is illustrative to compare the energy and timescales of the shocks that
have been seen in systems ranging from the elliptical galaxy NGC4636 [71]
to the most energetic shock in the cluster MS0735.6+7421 [94]. Table 1 lists
the radius of the shock, the time since the AGN outburst, the initial outburst
energy and the mean power of the outburst. As long as the energy from the
outburst can be transferred to the gas, the amount of energy in the outbursts
is enough to replenish the heat lost by the gas through radiative cooling. While
Mathews et al. [92] and Fujita and Suzuki [55] have argued that shocks will
only reheat the inner cores of clusters, the simulations by Ruszkowski et al. and
by Heinz and Churazov show that the energy from the AGN outbursts can

Table 1. SMBH outburst parameters: from clusters to galaxies

Source Shock Age Energy Mean Mass
radius power swallowed
(kpc) (My) (1061 erg) (1046 erg s−1) (108 M�)

NGC4636 ∼ 5 3 0.00006 0.0007 0.00003

M87 14 10.6 0.0008 0.0024 0.0005

Hydra A 210 136 0.9 0.2 0.5

Hercules A 160 59 3.0 1.6 1.7

MS0735.6+7421 240 104 5.7 1.7 3
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be distributed throughout the cooling core [61, 120, 121]. The last column
in Table 1 gives the mass that would need to be accreted by the SMBH
in order to produce the outburst, if one assumes that the mass to energy
conversion efficiency is 0.1. As noted by McNamara et al. and Nulsen et al.,
the large accreted masses required to produce the giant outbursts in clusters
like MS0735.6+7421 imply a significant growth in black hole masses during
the current epoch.

AGN outbursts cannot be so large that they drive the gas from the cluster
core (or entirely remove the X-ray gas from the poor groups or early-type
galaxies). On the other hand, the outbursts must be large enough to reheat
the gas and significantly reduce the cooling rates to the low residual cooling
seen in most clusters at 10%–20% of the standard cooling flow rate. It now
seems likely that nuclear outbursts and cooling flows are strongly connected
as supported by the correlation between cavity mechanical power and cooling
luminosity found by Birzan et al. [9]. Through a feedback cycle, cooling gas
can fuel the outbursts, while the outbursts can reheat and reduce the amount
of cooling gas. However the occasional galaxy merger, as in Cen A and more
frequently at earlier epochs, also can provide the necessary fuel to produce
outbursts.

The SMBHs seen in present epoch galaxies are the relics of those in
quasars. To explain the dramatic changes in luminosity between the bright
quasar phase and the present, quiet phase, Churazov et al. have suggested
that the black hole energy release is a function of the infalling mass accre-
tion rate, such that the luminosity is low at low accretion rates and reaches
a fixed fraction of Mc2 at accretion rates above 0.01–0.1 of the Eddington
value [19] . Initially, when the black hole is small, feedback from accretion
onto the black hole is not sufficient to reheat the cooling gas. In this quasar
phase, there is near-Eddington accretion resulting in rapid black hole growth
and high luminosity, but weak feedback. As the black hole grows, eventu-
ally mechanical feedback reheats the cooling gas, so that at the present time,
the radiative efficiency of accretion is very low and the black hole growth is
very slow.

Through X-ray and radio observations, we are beginning to understand
the outbursts from SMBH at the centers of galaxies and the energy transfer
mechanisms between the SMBHs and the gas. The X-ray, as well as the radio
observations, show not only the current state of the AGN, but by looking at
the reflections of these outbursts in the surrounding gas, we can chronicle the
history of AGN outbursts. The cooling and feedback process may lead to the
observed cutoff at the bright end of the galaxy luminosity function, as well as
to significant growth of the black holes.
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3 Cluster Formation and Evolution

The growth of structure in the Universe proceeds through gravitational ampli-
fication of small scale instabilities in an hierarchical manner in which clusters
form and grow through the gravitational infall and mergers of smaller subclus-
ters. The intracluster gas is heated to 107–108 K by shocks generated during
these mergers. The early Einstein observations showed significant structures in
40% of clusters [69], demonstrating that clusters were not yet relaxed systems,
but were still forming. Matter continues to accrete onto clusters, preferentially
along large scale filaments. While much of the growth is through the accretion
of small groups, at the extreme is the merger of nearly equal mass components.
These major mergers can be spectacular events involving kinetic energies as
large as 1064 ergs. Cluster mergers convert the kinetic energy of the gas in the
colliding clusters into thermal energy by driving shocks and turbulence in the
cluster gas. A small fraction of this energy may be diverted into nonthermal
phenomena, including magnetic field amplification and the acceleration of rel-
ativistic particles that are seen in synchrotron radio halos (e.g. [46, 57]) and in
inverse Compton X-ray emission. Merger driven turbulence is likely the main
process responsible for generating the ultrarelativistic electrons that produce
the diffuse radio emission. However shock acceleration or the compression of
the magnetic fields along with an increase in the density of pre-existing rel-
ativistic electrons due to gas compression at the shock is likely important in
the cap or edge of the radio halo, near the shock front [90].

For the first time, with Chandra’s sensitivity and spatial resolution, it is
possible to observe the classical bow shocks generated by cluster mergers.
While bow shocks are rare, “cold fronts”–sharp contact discontinuities be-
tween gas regions with different temperatures and densities–are often seen in
clusters. Cold fronts are associated with the bulk motion of a cool dense sub-
cluster moving through the hotter cluster gas. They delineate the boundaries
of the subcluster and while the subcluster and cluster have different entropies,
the pressure in the dense cool subcluster is in balance with the thermal plus
ram pressure of the surrounding cluster gas. Cold fronts also are found in
many cool cluster cores where “sloshing” of the cool gas in the core can be
caused by any minor merger, even one with an infalling gasless subcluster, one
stripped of its gas earlier in the merger [4]. While the origins of cold fronts
associated with subcluster mergers and sloshing cores are different, the physi-
cal interpretation of X-ray edges as contact discontinuities between gases with
different entropies that are moving with respect to each other holds for both.

3.1 Shock Fronts in Supersonic Mergers

The only two clusters known to exhibit a shock front with both a sharp density
edge and temperature jump are 1E0657-56, a Mach 3 merger (see Fig. 17) [88]
and A520, a Mach 2 merger [90]. Observations of shock fronts are rare, since
one must catch the merger before the shock has moved to the outer, lower
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500 kpc

1E 0657–56

Fig. 17. The 500 ksec Chandra image of 1E0657-56 shows the “bullet” subcluster
after it has passed through the main cluster. In front (west) of the “bullet” is the
shock front [91]

surface brightness regions, and the merger must be nearly in the plane of the
sky for the shock region to be visible.

The cluster 1E0657-56 has the highest X-ray luminosity (3× 1045 ergs s−1),
the highest gas temperature (14 keV), and the most luminous radio halo of
all known clusters. The 500 ksec Chandra image (Fig. 17) shows a spectacu-
lar merger occurring almost exactly in the plane of the sky, with a prominent
bow shock preceding the small, cool “bullet” subcluster [88]. From the abrupt,
factor of three density jump at the shock, Markevitch et al. determine that
the “bullet” subcluster is moving at Mach 3.0 ± 0.4, which corresponds to
a velocity of 4700 km s−1. Gas from the cooler subcluster that had a lower
pressure than that of the combined ram pressure and cluster thermal pressure
has been stripped and swept back, leaving only the core of the “bullet” to
continue to travel supersonically through the cluster.

The bow shock offers the opportunity to determine whether the electrons
in the ICM are heated directly by shocks or compressed adiabatically and
then heated by collisions with protons. From the gas density jump across
the shock front and the pre-shock temperature, one can predict the post-
shock adiabatic and shock-heated electron temperature and compare that to
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the observed temperature. Markevitch et al. measure electron temperatures
exceeding 20 keV in the shock, which are consistent with instant heating by
the shock and rule out the collisional electron-ion equilibration, which occurs
on a Spitzer timescale.

While dark matter dominates the mass in clusters and in the Universe, its
nature remains a mystery. From laboratory work, interaction cross-sections be-
tween dark and baryonic matter are very small [6]. Models with self-interacting
dark matter have been suggested to better predict the mass profiles in galax-
ies. 1E0656-56 also allows constraints to be placed on the dark matter self-
interaction cross-section [89]. As Fig. 18 shows, the gas in the “bullet” sub-
cluster has been ram pressure stripped and lags behind both the subcluster
galaxies, which are effectively collisionless, and the subcluster’s dark matter
peak determined from the weak lensing analysis [20, 21]. As the “bullet” sub-
cluster passes through the main cluster, its dark matter is subjected to a flow
of dark matter particles associated with the main cluster. From their analysis
of 1E0657-56, Markevitch et al. place a limit of the dark matter collisional
cross-section, σ/m < 1 cm2 g−1 [89].

3.2 Cold Fronts in Cluster Mergers

A sharp discontinuity in the gas density had been observed in ROSAT images
of A3667 [87] and was expected to be a shock front produced by a merger.

Fig. 18. The HST ACS image of 1E0657-56 with superposed “red” contours of the
total mass distribution derived from lensing [21] as well as “white” contours of the
X-ray intensity [14]
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200 kpc

A 3 6 6 7

Fig. 19. The 500 ksec Chandra image of A3667 shows a sharp edge southeast of
the cluster core which is the leading edge of the subcluster [138]

However the Chandra observation (Fig. 19) showed that this was not a shock
front, but was instead a cold front [132]. From measurements of the gas density
and the gas temperature, the gas pressure on both sides of the cold front can
be accurately calculated. The higher pressure on one side of the cold front
must be compensated by the ram pressure of the hot ICM on the moving cold
front. Thus by measuring the difference between the thermal pressures of the
gas inside the front and downstream from it in the free-flow region, Vikhlinin
et al. determined the required ram pressure of the ambient flow and found the
subcluster velocity in A3667 to be 1430 ± 290 km s−1, Mach 1.0 ± 0.2 [132].

Cold fronts are remarkably sharp, in terms of both their gas density and
temperature jumps. Thus thermal conduction across cold fronts must be sup-
pressed from the classical collisional, Spitzer value by two orders of magni-
tude [39, 132]. In particular in A3667, Vikhlinin et al. found a limit on the
width of the density jump of 3.5′′ (3.5 kpc), which is several times less than
the 11 kpc electron mean free path for Coulomb collisions and thus required
that transport processes across the edge be suppressed [132].
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To suppress transport processes in plasmas, the presence of either a
strongly tangled magnetic field or a large-scale field perpendicular to the likely
direction of heat conduction or diffusion is generally invoked. If the magnetic
field is tangled, the observed 3.5 kpc limit on the width of the front is also the
upper limit on the size of magnetic loops. This magnetic field would effectively
isolate the cold gas cloud and prevent the sharp density gradient across the
cold front from dissipating [133].

4 The Effects of Clusters on Galaxies

X-ray images have shown that clusters are often complex systems with ex-
tensive structure and with mergers occurring on timescales of a few billion
years. In these dynamically rich cluster environments, galaxies are subject to
both tidal and hydrodynamic interactions that can significantly affect their
evolution. The ram pressure of the intracluster medium (ICM) acting on the
interstellar gas as a galaxy moves in a cluster can produce long X-ray tails,
trailing wakes or debris tails of gas swept from the galaxy. Ram pressure
stripping also has been invoked to explain the HI deficiency in spiral galaxies
in clusters as well as the lower star formation activity seen in cluster spirals
(e.g. [30, 111] As pointed out by Nulsen [99], stripping by transport pro-
cesses (e.g. Kelvin-Helmholtz instabilities) can be much more effective than
ram pressure stripping. Stripping of the galaxy gas, along with early epoch
galactic winds, removes the gas enriched in heavy elements from the galaxies
and disburses it throughout the cluster. Study of the tails can determine the
thermal history of the gas as it is stripped from the galaxies and incorporated
into the hot ICM.

In this section we first discuss M86 and NGC4552 in the Virgo cluster and
NGC1404 in Fornax, all examples of elliptical galaxies moving at sonic or su-
personic velocities through the ICM. Next we describe the three known exam-
ples of spiral galaxies currently undergoing significant ram pressure stripping
in rich clusters (A1367, A2122 and A3627). We also discuss the interactions of
the large spiral NGC 6872 with the hot diffuse gas in the Pavo group. Finally
we describe the existence of very small, cool X-ray coronae in the cores of
elliptical galaxies in the Coma, A1367 and A1060 clusters.

4.1 Ram Pressure Effects on Elliptical Galaxy Coronae

Although its optical appearance is that of a normal giant elliptical, of all the
Messier galaxies, M86, a giant elliptical in Virgo, has the highest blue-shifted
velocity, −260 kms−1. A comparison to the line of sight velocity of M87 (1300
km s−1) which is assumed to be nearly at rest in the center of the cluster,
suggests that M86 is moving supersonically through the Virgo cluster. The
X-ray emission from M86, studied with Einstein, ROSAT, Chandra and XMM-
Newton, shows a long (125 kpc on the sky) stripped tail or plume extending
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Fig. 20. (a) This Chandra mosaic of the M86 region of the Virgo cluster shows the
bright core of the elliptical M86 and its very long tail (125 kpc on the sky) as well
as the small corona and short X-ray tail associated with the elliptical M84. (b) The
optical image on the same scale as the X-ray image

northwest from the galaxy, as well as a hot corona of gas around the galaxy
itself [47, 50, 114, 141]. Figure 20 shows the X-ray emission, as seen with
Chandra, and the optical field for M86.

A second Virgo elliptical that appears to be moving supersonically through
the Virgo ICM is NGC4552 (M89). Compared with M87, its line of sight
velocity of 340 km s−1 implies a supersonic velocity of nearly 1000 km s−1

towards us. Figure 21 shows the Chandra image of the diffuse gas surrounding
NGC4552 [84]. The X-ray emission shows a sharp edge 40′′ (3 kpc) north of the
galaxy, horns of emission extending southeast and southwest of the northern

NGC 1399

NGC 1404

5 arcmin

(a) (b)

Fig. 21. (a) The X-ray tail and bright central region of the elliptical NGC4552
moving supersonically in the Virgo ICM [84]. (b) The cold front and tail of the
elliptical NGC1404 as it falls toward NGC1399 in Fornax [81]
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edge and a 2′ (10 kpc) tail of X-ray emission to the southeast. These are all
features of the supersonic ram-pressure stripping of galaxy gas by the cluster
ICM that have been found in simulations. As discussed in Sect. 3 and by
Vikhlinin et al. [132], by measuring the gas temperature and the density on
the galaxy side and on the cluster side of the surface brightness edge, one can
measure the pressure jump across the edge, which determines the velocity of
the galaxy through the cluster gas. For NGC4552, Machacek et al. found a
velocity of ∼1600 km s−1 corresponding to Mach 2. Combining this velocity
with NGC4552’s line of sight velocity with respect to M87, they determined
that NGC4552 was moving toward us at an angle of ∼35 degrees with respect
to the plane of the sky [84].

In the Fornax cluster (Fig. 21), the elliptical galaxy NGC1404 also shows
a sharp surface brightness edge characteristic of ram pressure stripping by the
cluster ICM. The galaxy gas has a temperature of 0.55 keV, nearly three times
cooler than the surrounding Fornax cluster gas (1.5 keV), making NGC1404
a galaxy-sized analog of the “cold front” seen in Abell 3667 [132]. From mea-
suring the gas density and temperature across the edge and determining the
pressure jump, Machacek et al. found that NGC1404 was moving through the
cluster gas with a velocity of 600 km s−1, approximately Mach 1 [82].

4.2 Stripped X-ray Tails from Late-type Galaxies
in Merging Clusters

Since luminous ellipticals have hot gaseous coronae [51], it should not be
surprising that one sees an X-ray tail as gas from an early-type galaxy is
stripped by the motion of the galaxy through the ICM. However since much of
the gas in late-type galaxies is cold, finding X-ray emitting tails behind spiral
galaxies should be a rare event, since this requires that a gas rich spiral must
penetrate deeply into the cluster core. Three spectacular examples of long
X-ray tails associated with spiral galaxies have been found. All three occur
in clusters undergoing major mergers. These three galaxies exhibit extreme
examples of processes that probably influenced the evolution of many cluster
galaxies, particularly at earlier epochs of cluster formation. Star formation
rates can be increased when the galactic ISM is compressed, but not yet fully
stripped by the intracluster gas. Compression of the galaxy ISM by the cluster
ICM, as spiral galaxies first fall into the cluster potential, has been suggested
as the mechanism for star formation that results in the high fraction of blue
galaxies in some z∼0.4 clusters, the “Butcher–Oemler effect” [15]. The three
galaxies described here may be low redshift examples of the blue galaxies
found in Butcher–Oemler clusters.

The first late-type galaxy with an extended tail that was recognized from
Chandra observations was the disturbed spiral C153 in the richness class 4,
z = 0.247 cluster A2125 [105, 140]. The X-ray tail stretches 80 kpc and has a
luminosity of 5 × 1041 ergs s−1. Owen et al. found the galaxy C153 to be bright
in the U-band ([OII]) with evidence of star formation in the last 108 years.
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While star-formation at the leading edge of the galaxy disk appears to be
cut off, perhaps because the gas has been stripped from this region, Owen et
al. report evidence for young stars in the stripped tail. C153’s radio emission
suggest both an AGN and a starburst have been triggered as the galaxy passed
through the ICM at high velocity.

The starburst galaxy UGC6697 in the northwest merging subcluster of
A1367 exhibits numerous giant HII regions, shocked gas and a radio “trail”
[56], as well as a 60 kpc long X-ray tail detected in Chandra images by Sun
and Vikhlinin [125]. These authors find that ram pressure alone is probably
not sufficient to remove the galactic gas and that Kelvin-Helmholtz instabil-
ities [99] and other mechanisms are likely important. However as Gavazzi et
al. suggested [56], it is likely the ram pressure that compresses the ISM pro-
ducing the starburst. Sun and Vikhlinin argue that the correspondence of the
X-ray, radio and Halpha edges point to the region outside the front where star
formation is truncated due to stripping, while the starburst activity inside the
front is triggered by the galaxy’s interaction with the ICM.

Recently Sun et al. found a 70 kpc long X-ray tail associated with a small
late-type galaxy ESO 137-001 in the merging cluster A3627 [126]. The tail as
seen by XMM-Newton and Chandra is shown in Fig. 22. Unlike the X-ray tail
associated with UGC6697 in A1367, which does not extend beyond the optical
galaxy, the ESO 137-001 tail stretches far behind the galaxy. As Sun et al.
argue, the source of the material in the X-ray tail (∼109 M�) is likely cold ISM
from the galaxy, mixed with the hot (6.5 keV) cluster gas. The cool (0.7 keV)
gas temperature in the tail implies that the tail is primarily composed of cold
gas stripped from the galaxy. As Sun et al. conclude “ESO 137-001, in its first
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Fig. 22. (a) X-ray contours from ROSAT show the distribution of hot gas in the
cluster A3627. The blue contours outline radio sources (b) The Chandra image from
the region in the left panel marked by a small box shows a 70 kpc long ram pressure
stripped tail from the small late-type galaxy ESO 137-001 in the cluster A3627 [126]
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passage through the cluster core, is being converted into a gas-poor galaxy
(likely an E+A galaxy) after a possible initial starburst, all by the interaction
with the dense ICM.”

4.3 X-ray Trails and Wakes in Poor Clusters

Interactions of galaxy gas with the surrounding medium have been seen in
groups as well as in rich clusters. For example, in the Pavo group, Machacek
et al. detected a bright trail of X-ray emission extending 90 kpc between
the disturbed, large spiral galaxy NGC 6872 and the dominant elliptical NGC
6876 at the center of the group [83]. Figure 23 shows the XMM-Newton image
as well as the DSS optical image of the same region. Unlike the three long
tails behind late type galaxies that have been found in rich, merging clusters,
all of which have temperatures much cooler than the surrounding hot ICM,
the 1 keV gas temperature of the tail in the Pavo group is significantly hotter
than the 0.5 keV Pavo gas. Machacek et al. suggest that the X-ray trail may
be due to mixing of Pavo IGM gas with ISM gas that was stripped from the
spiral NGC 6872 by turbulent viscosity, as the spiral moves supersonically
(velocity ∼1300 km s−1) through Pavo, although gravitational focusing of the
group gas into a Bondi-Hoyle wake, due to the supersonic motion of the spiral
NGC 6872, also can be significant.

In summary, the observations of X-ray tails, trails and wakes behind both
elliptical and spiral galaxies in clusters and groups provides the opportunity to
determine the dynamical motions of galaxies in these systems – the direction
and total velocity that the galaxies are moving with respect to the surrounding
cluster gas – and the opportunity to investigate the processes through which
gas is stripped from the galaxy and incorporated into the surrounding medium
as well as the effects of stripping on the galaxy.

Fig. 23. (a) The XMM-Newton image of the Pavo group shows a trail of wake of
emission between the spiral NGC 6872 and the elliptical NGC 6876. (b) The optical
field of the Pavo group on the same scale as panel a
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4.4 Pressure Confined Coronae

In addition to removing the interstellar medium from galaxies, as they move
through the hot intracluster medium, the hot intracluster gas can confine the
interstellar gas in the the centers of large ellipticals found in the cores of clus-
ters [123, 134, 143]. In the hot dense cores of Coma, the northwest subcluster
in A1367 and in A1060 (the Hydra cluster), gas clouds with temperatures
of 1–2 keV, masses of ∼108 M�, and extents of only a few kpc have been
found at the centers of large ellipticals. The top panels in Fig. 24 show the
relative scale of the small X-ray coronae to the Coma galaxies NGC4889 and
NGC4874. The very existence of cool gas surrounded by hot intracluster gas
was a surprise, given that evaporation and stripping of the ISM make the sur-
vival of coronae difficult in dense cluster environments. The radiative cooling
timescales for these coronae are ∼108 years, while the time to evaporate the
small cool coronae by the hot ICM is even shorter, only a few times 106 years.
Either of these mechanisms could destroy the coronae, unless the heat influx
driving the evaporation and the radiative cooling balance each other (stellar
mass loss also can compensate for some of the mass lost from the coronae).
To achieve this balance, the thermal conduction from the hot ICM must be
suppressed at the boundary of the corona by a factor of 30 or more compared
to the classical Spitzer value [134]. In two galaxies (NGC4874 in Coma and
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NGC3842 in A1367), Sun et al. noted that their double-lobed radio sources
must deposit most of their mechanical energy outside the coronae or the small
coronae would be disrupted [123].

5 Clusters and Cosmology

During the twentieth century, scientific views changed from believing that all
the matter in the Universe is in stars to understanding that the stars and cold
gas make up only about 1% of the mass, with hot baryons contributing 3%,
while dark matter makes up about 23% and dark energy about 73% [127]. Thus
the two dominant components of the Universe are dark matter, a non-baryonic
form of matter whose gravity is responsible for the formation of structure,
and dark energy, whose pressure is apparently causing the expansion of the
Universe to accelerate. However it is only through observations of the 4% of
matter which is luminous that we can learn about the distribution of dark
matter and the nature of dark energy.

In addition to being the most massive, gravitationally bound objects in
the Universe, rich clusters are very luminous (X-ray luminosities as high as
several 1045 ergs s−1) and thus can be detected and studied at high redshifts.
For a particular cosmology, theory can accurately predict what the cluster
mass function2 should be at any redshift. By measuring changes in the cluster
mass function with redshift, one can constrain Ωm, ΩΛ and the equation of
state w for dark energy, as well as determine an accurate measurement of the
primordial power spectrum on the scale of cluster masses.

Thus clusters provide an independent and complimentary method of de-
termining cosmological parameters compared to methods using type 1a super-
novae (e.g. [108, 117]) or fluctuations in the Cosmic Microwave Background
(CMB) [127]. The problem then is how to determine the cluster mass or a
reasonable proxy for it. While in theory, it is straight forward to determine
the cluster mass from the gas temperature and density profiles, it is very dif-
ficult to measure the cluster gas temperature at large cluster radii (i.e. at the
virial radius) where the X-ray emission is extremely faint. Similarly weak lens-
ing methods also yield poor determinations of the cluster mass at large radii.
Instead a number of proxies for the cluster mass function have been used.

For clusters in hydrostatic equilibrium, the gas temperature should be
closely related to the depth of the cluster potential well, therefore allowing
the cluster X-ray temperature function to be used as a proxy for the cluster
mass function. Henry and Arnaud measured the amplitude of density fluctu-
ations and the slope of the perturbation spectrum on cluster scales from an
analysis of the X-ray temperature function for a complete sample of nearby

2 the cluster mass function is the number density of clusters with masses greater
than M , in a comoving volume element.
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clusters [63]. As samples of distant cluster temperatures were obtained, con-
straints on Ωm were made using the evolution of the X-ray temperature func-
tion [27, 36, 65, 66]. Assuming the cluster baryon fraction approximates the
cosmic mean, many researchers have estimated Ωm [1, 24, 38, 40, 124, 142],
generally finding Ωm < 1. Early attempts also were made to use the gas
fraction as a distance indicator [38, 118]. However all of these early stud-
ies were limited by uncertainties in the cluster mass, since accurate tem-
perature profiles could not be obtained in distant clusters or at large radii
in nearby clusters. Chandra and XMM-Newton now provide accurate tem-
perature profiles and thus mass measurements at large radii (∼0.5 r200) for
low-redshift clusters, which provide good present epoch determinations of the
Mass–Temperature (M–T) relation [3, 113, 137, 138]. The M–T relation de-
rived from 13 high redshift (0.4 < z < 0.7) clusters is consistent with self-
similar evolution of the M–T relation for low redshift clusters [77], which
confirms an important prediction from the theory of cluster formation [35].

Recently two methods using Chandra observations of distant clusters have
been used to constrain cosmological parameters. In one study, Allen et al.
measured the ratio of the mass in baryons (gas plus stars) to the total cluster
mass (i.e. the “baryon mass fraction”) for a sample of 26 clusters ranging in
redshift from z = 0.07 to 0.9 [2]. Since the baryon mass fraction in clusters
is expected to be constant with redshift (distance to the cluster), the cosmo-
logical parameters are constrained by determining when a constant baryon
mass fraction is obtained [106]. Figure 25 shows the measured ratios for the
26 clusters for SCDM parameters (panel a) and for ΛCDM with Ωm = 0.25
and ΩΛ = 0.96 (panel b). The gas mass fraction appears to decrease with
redshift in the SCDM cosmology, because this cosmology underestimates the
distance to higher redshift clusters.

00
.0

5
0.

1
0.

15

0.
15

0.
1

0.
05

0.
2

0.5
z

f g
as

 (
r 2

50
0)

f g
as

 (
r 2

50
0)

1 0 0.5
z

1

(a) (b)

Fig. 25. (a) The gas mass fraction in 26 clusters plotted as a function of redshift,
for the standard CDM cosmology. (b) The gas mass fraction plotted against redshift
for the ΛCDM cosmology [2]
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Like the cosmological tests that use SN Ia’s as standard candles, the cluster
baryon mass fraction is a “distance” measurement. A disadvantage of this
technique is that it is difficult to accurately measure the total cluster mass
at large radii, since the mass measurement at a particular radius is only as
accurate as the measurement of the temperature and its gradient at that
radius.

While WMAP observations of the CMB have greatly improved the preci-
sion with which many cosmological parameters are known, in the CMB data
alone there are some degeneracies concerning dark energy and its equation of
state (i.e. the ratio of pressure and energy density). Recently, Rapetti, Allen
and Weller extended the work of Allen et al. and performed a combined anal-
ysis of the Cosmic Microwave Background data, the SN Ia observations and
the cluster observations and, with the assumption that the Universe is flat,
obtained constraints on the current equation of state for dark energy of w =
−1.05 (+0.10, −0.12) [115].

The second method, developed by Vikhlinin et al., relies on the assumption
that the composition of clusters is typical of the Universe and thus that the
baryon mass fraction at large radii in massive clusters should be the same
as that in the Universe (i.e. Ωb/Ωm is constant) [136]. From the accurate
temperature and density measurements for 13 clusters (see Fig. 5), Vikhlinin
et al. find that the fraction of the total cluster mass in luminous baryons
(gas plus stars) in hot relaxed clusters is consistent with the global baryon
fraction measured from CMB observations [116, 127]. However instead of using
the baryon fraction to constrain cosmological parameters (e.g. [106]), which
would also require that the total cluster mass be measured, Vikhlinin et al.
uses the cluster baryon mass function as a proxy for the cluster mass function.
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Fig. 26. (a) The upper set of points define the local baryon mass function [139],
while the lower points are from clusters at z > 0.4 [135]. (b) A comparison of the
constraints on Ωm and ΩΛ derived from SN 1a, CMB, and cluster observations [135]
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Figure 26 (panel a) shows the change in the baryon mass function deter-
mined from a sample of local clusters compared with a sample of clusters at
z > 0.4 [136]. Deriving constraints on cosmological parameters through dif-
ferent techniques is important both for confirming parameter values, but also
because the combination of different techniques can often better define the
parameters, since different methods yield different constraints, as illustrated
in panel b of Fig. 26 [135].
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1 Introduction

The purpose of these lectures is to describe some of the dynamical phenomena
that are important in the evolution of galaxies and clusters of galaxies.

Galactic Dynamics is usually perceived as an arid discipline, whose mathe-
matical formalism make it hard to apply to real astronomical problems. This is
very unfortunate, since gravity is behind all astronomical phenomena and its
resulting dynamics has a role to play. This misconception of Galactic Dynam-
ics stems from the fact that often students are introduced to the subject using
a formal approach, full of mathematical rigor, that leads through a lengthy
path, before reaching astronomical applications. Although mathematical cor-
rectness is gained, a physical grasp of the dynamics behind is sometimes lost.

It is our intention to bypass the usual formal introduction and to use
an eclectic list of topics related to the dynamics of galaxies and clusters of
galaxies, to illustrate the use of Galactic Dynamics. Our main goal is under-
standing, rather than rigor. We will attempt to show the student how, using
some basic equations, we can extract useful dynamical information that can
help in our understanding of the realm of galaxies.

In Sect. 2, Poisson’s and Boltzmann’s equations are presented as the basic
equations of Galactic Dynamics. After briefly reviewing what makes a dynam-
ical system collisionless, we introduce in Sect. 3 one of the Jeans equations in
spherical coordinates as a quick tool to derive the dynamical properties of a
model built from a density profile, without having to build a self-consistent
dynamical model. The Navarro, Frenk and White profile is used as an ex-
ample. A Mathematica Notebook version of this section is provided as well.
Students with access to this program can interact with this version and change
parameters in the examples provided. The full Notebook is available from the
Guillermo Haro and the author’s web pages.

In Sect. 4 we mention two additional density profiles that can be used as
exercises for the reader. We also note that simulations of interacting galaxies
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tend to give density profiles that go as ρ ∝ r−4 at large radii, when simu-
lated in isolation, as opposed to those of systems immersed in an expanding
background, which tend to give the gentler ρ ∝ r−3 of the Navaro, Frenk &
White (NFW) profile. We show why the former dependence is expected for
an isolated finite mass system that has been perturbed.

In Sect. 5 we talk about the orbital structure of spherical potentials. Al-
though idealized, spherical potentials allow us to introduce basic concepts
about orbits. We describe the use of the Lindblad diagram as a tool to clas-
sify orbits in spherical potentials.

In Sect. 6 we tackle a sticky issue: Dynamical friction, one of the main
culprits responsible for robbing center of mass motion to satellite systems,
causing them to spiral toward the center of the host system. As we will see,
this force is a case of bipolar personality, depending on the speed of the object
being reduced, its behavior can change quite a bit.

In Sect. 7 we examine the tidal force, responsible for truncating small
systems when they move within the gravitational influence of a larger one.
We will see that, contrary to common opinion, tides do not necessarily stretch
along the radial direction. It all depends on the mass distribution of the tide-
producing object. We then discuss the concept of tidal radius at some length,
going from a very simplified static model of two point particles, to the inclusion
of effects due to the motion of the satellite and host systems, non-circular
orbits and extended mass distributions.

In Sect. 8 we talk about what happens when two galaxies collide. The rapid
variation of the perturbing force pumps orbital energy into the internal degrees
of motion of the interacting galaxies and heats them up, promoting mass loss
above the rate due to tidal radius truncation. We discuss the role of two very
important timescales: the interaction time and the internal dynamical time.
As we will see, the amount of damage the interacting systems suffer, depends
to a great extent on the ratio of these two numbers.

In Sect. 9 we present a simple exercise, where the combined action of
dynamical friction and tidal truncation, acting on a Plummer sphere that
spirals, following a path close to circular within a flat rotation curve halo, is
modeled. This wraps up much of what has been discussed in the three previous
sections.

Finally, in Sect. 10 we suggest some references to those interested student
that which to pursue, in more detail, the topics covered in these lectures.
Finally, Sect. 11 provides some concluding remarks.

2 Basic Galactic Dynamics

The two most important equations of Stellar and Galactic Dynamics are the
Poisson’s equation, which relates the gravitational potential φ with its source
(the mass density function ρ),



Dynamics of Galaxies and Clusters 73

∇2φ = 4πGρ , (1)

and the Boltzmann’s equation, which is a transport equation that describes
the evolution of a dynamical system in phase-space,

∂f

∂t
+ v · ∂f

∂x
−∇φ · ∂f

∂v
=
(
∂f

∂t

)
coll

(2)

The phase-space distribution function, f(x,v, t), contains all the dynam-
ical information of the system. Its projection in configuration space gives the
spatial density of the system,

ρ(x, t) =
∫

f(x,v, t)d3v .

The right hand side of Boltzmann’s equation contains the so-called collisional
term. Its effect differs from the term in the left hand side, mainly by the
timescale on which the collisions, it describes, operate. The left hand side
describes the flow of particles in a given parcel of the system as it moves in
phase-space, on a timescale determined essentially by its potential, whereas
the right hand side describes the flow of particles in and out of this parcel
due to 2-body collisions, which usually are so fast, with respect to the for-
mer timescale, that the collisional time derivative appears, to the rest of the
equation, as an instantaneous source and sink term.

The natural timescale of the left hand side of Boltzmann’s equation is the
so-called dynamical timescale, which is essentially the orbital time for particles
within the system. As a very rough approximation to a system-wide average
of this timescale, we can use the ratio of the system size and the rms velocity,

tdyn ≈ R/vrms .

The effect of the right hand side of Boltzmann’s equation operates on the
so-called collisional timescale. It can be shown that this time is of the form
(e.g. see Sect. 3.2 of [46]),

tcoll ≈ (R/vrms)N/ log(N) ,

where N is the number of particles within the system.
The ratio of tcoll to tdyn is a measure of the degree of collisionality of a

dynamical system:
tcoll/tdyn ≈ N/ log(N) . (3)

Notice that the parameters that characterize the properties of the system
in physical units cancel out, and the only dependence left is on the number of
particles within the system: the more particles, the larger this ratio is, and so
the less important collisions are. This is a bit counter-intuitive and must be
explained further. One would have thought that the more particles there are
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in a system, the more collisions will be, and indeed this is the case, but what
matters at the end is not the number of collisions but rather the effect they
have in the system.

Let us take a system with N particles. If we split each particle in two,
keeping everything else constant in the system, like the total mass, size and
the rms velocity, we double the number of particles and thus the number of
collisions. But since the strength of the gravitational interaction scales as the
product of the masses, and each mass is now one half of what it was before, the
result is a reduction in the effect of collisions. In reality, doubling the number
of particles also reduces the mean inter-particle distance (l ∝ N−1/3), which
has the outcome of increasing the collisional effect, but in 3D space this is
dominated by the mass effect, even when taking into account the increased
number of collisions per unit time.

So, the more particles the more collisions, but the less effect they will
have. When the effect of collisions is negligible over the period of time we are
interested in, we are lead to the collisionless Boltzmann equation:

∂f

∂t
+ v · ∂f

∂x
−∇φ · ∂f

∂v
= 0 . (4)

This is a partial differential equation that, together with Poisson’s equa-
tion and proper boundary conditions, presumably set by observations, can in
principle be solved. In practice, there is not enough observational information
and furthermore, the mathematical complexity of the task of solving it, makes
the direct solution an impossibility for realistic cases.

Other alternative approaches have been used. In particular, a fruitful ap-
proach is obtained rewriting the previous equation as a total time derivative,
using the fact that minus the gradient of the potential is just the acceleration,

∂f

∂t
+ ẋ · ∂f

∂x
+ v̇ · ∂f

∂v
=

Df

Dt
= 0 . (5)

This means that, as we move along dynamical trajectories, the value of the
distribution function does not change. This is a very strong restriction that
can be exploited. If furthermore, the system is in steady state, the trajectories
become invariant orbits and f must be a function of those quantities that are
conserved along them:

f(x,v) = f(Ii), where Ii(x,v) is such that DIi/Dt = 0 , (6)

with Ii’s the so called integrals of motion. This results in the Jeans’ theorem
that can be used to find solutions [12]:

Theorem 1 (Jeans’ Theorem). Any steady-state solution of the collision-
less Boltzmann equation depends on the phase-space coordinates only through
integrals of motion in the galactic potential, and any function of the integrals
yields a steady-state solution of the collisionless Boltzmann equation.
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This lead to a whole industry of model building based on classical integrals
of motion: f = f(E), f = f(E,L), f = f(E,L2), f = f(EJ), etc., where E,
L and EJ are the energy, angular momentum and the Jacobi energy.

Before leaving this approach, we must note that Jeans’ theorem is strictly
valid only when the system is integrable (i.e., there is a canonical transfor-
mation to a coordinate system where the motion can be separated in each
of its degrees of freedom). Such systems have orbits completely determined
by isolating integrals of motion and are called regular. The appearance of ir-
regular orbits invalidates Jeans’ theorem [11]. However, steady-state spherical
systems, like those we examine in these notes, do not have irregular orbits.
We will come back to this subject in Sect. 5.

Another approach has been to extract useful dynamical information with-
out necessarily building a full dynamical model. This method is based in the
Jeans’ equations, which are just the result of taking velocity moments of Boltz-
mann’s equation. In spherical coordinates, a very useful equation that we will
be using is the one obtained from the 2nd velocity moment:

d
dr

(ρσ2
r ) +

ρ

r
[2σ2

r − (σ2
θ + σ2

φ)] = −ρ
dφ
dr

, (7)

where σr, σθ and σφ are the three spherical coordinate components of the
velocity dispersion. Using this equation, we can extract information about
these components for a system for which we know the density profile and the
resulting potential, without building a phase-space distribution function for
it. This is a very useful tool. But we must pay a price for this expedience,
as finding a solution to Jeans’ equations does not guarantee that a physical
model may exist (i.e., f is positive everywhere).

In the next section we will learn to use this equation to explore some
dynamical properties of the Navarro, Frenk and White density profile, without
building a full self-consistent dynamical model for it.

3 A Case Study: The Navarro, Frenk and White profile

The Navarro, Frenk & White (NFW) profile was proposed as a universal
density profile, produced by hierarchical clustering in cosmological simulations
[40]. Here it is used as an example of how to extract information, using just a
few basic equations.

3.1 Density Profile

The density profile is given by:

ρ(r) = ρo(r/ro)−1(1 + r/ro)−2 . (8)
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It is convenient to cast it in a dimensionless form, by defining a dimensionless
length:

ζ ≡ r/ro ,

and a dimensionless density:

δ(ζ) ≡ ρ(r)/ρo = ζ−1(1 + ζ)−2 . (9)

Its limits at the center and infinity are,

lim
ζ→0

δ(ζ) → ζ−1 → ∞, lim
ζ→∞

δ(ζ) → ζ−3 → 0 .

We note that at r = ro, the density has a value equal to ρ(ro) = ρo/4, and
ρ(r) = 1 =⇒ ζ(1 + ζ)2 = 1 =⇒ ζ = 0.465571...

The NFW profile has a varying slope in the log–log plane, it diverges as
ζ−1 at the center and goes as ζ−3 for ζ → ∞. The midpoint for this slope
variation is at ζ ∼ −1 (Fig. 1).

3.2 Cumulative Mass

The mass enclosed within a sphere of radius r, is:

Mr ≡
∫ r

0

4πρ(r′)r′2dr′ = 4πρo

∫ r

0

(
r′

ro

)−1(
1 +

r′

ro

)−2

r′2dr′

= 4πρor
3
o

∫ ζ

0

(1 + ζ′)−2ζ′dζ′ = 4πρor
3
o [log(1 + ζ) + (1 + ζ)−1 − 1] .

Again, it is convenient to define a dimensionless enclosed mass,

μ(ζ) ≡ (Mr/M
∗) = log(1 + ζ) + (1 + ζ)−1 − 1 , (10)
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Fig. 1. NFW density profile
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Fig. 2. NFW cumulative mass

where we have also defined a characteristic mass, M∗ ≡ 4πρor
3
o .

We note the following values and limits:

μ(ζ) = 1 ⇒ ζ = 5.3054..., μ(ζ = 1) = 0.193147...

lim
ζ→0

μ = 0 , lim
ζ→∞

μ = log(ζ) → ∞ ,

thus, the enclosed mass diverges, but only logarithmically (Fig. 2).

3.3 Potential

The potential of a spherical mass distribution can be calculated as,

φ(r) = −4πG
[
1
r

∫ r

0

ρ(r′)r′2dr′ +
∫ ∞

r

ρ(r′)r′dr′
]
.

In our case, the first integral is,

φ1(r) = −4πG
r

∫ r

0

ρ(r′)r′2 dr′ = −G

r

∫ r

0

ρ(r′) 4πr′2 dr′ = −GMr

r

= −GM∗

ro

μ(ζ)
ζ

= −4πGρor
2
o

μ(ζ)
ζ

,

and the second integral is given by,

φ2(r) = −4πG
∫ ∞

r

ρ(r′)r′ dr′

= −4πGρor
2
o

∫ ∞

ζ

dζ′

(1 + ζ)2
= −4πGρor

2
o ζ

−1(1 + ζ)−1 .

Putting everything together, we get:
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φ(r) = −4πGρor
2
o ζ

−1 log(1 + ζ) .

It is natural then to define a dimensionless potential as:

Ψ(ζ) = ζ−1 log(1 + ζ) , (11)

where φ(r) = φoΨ(ζ), and φo ≡ −4πGρor
2
o .

Since limζ→0 Ψ(ζ) = 1, it is clear that φo is the depth of the potential
well. We also note that limζ→∞ Ψ(ζ) = 0, so despite the divergent mass, the
potential well has a finite depth. Since φo < 0, our dimensionless potential is
a positive function (Fig. 3).

3.4 Force

We now compute the magnitude of the force exerted by the NFW profile,

F (r) = −dφ
dr

= −φo

ro

(
dΨ
dζ

)
= −φo

ro
F(ζ) .

The dimensionless force is given by,

F(ζ) ≡ dΨ
dζ

=
ζ − (1 + ζ) log(1 + ζ)

ζ2(1 + ζ)
. (12)

The limits of the dimensionless force are,

lim
ζ→0

F(ζ) = −1/2 , lim
ζ→∞

F(ζ) = 0 .

Notice that the force is discontinuous at the origin. This is due to the
central cusp of the profile (Fig. 4).
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Fig. 3. NFW potential
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Fig. 4. NFW force

3.5 Escape and Circular Velocities

The escape velocity is easily obtained by the condition of null energy:

E = (1/2)v2
esc + φ(r) = 0 =⇒ v2

esc = −2φ(r) = −2φoΨ(ζ) .

It is clear that the natural unit of velocity is
√
φo. We can then define a

dimensionless escape velocity as:

β2
esc ≡ v2

esc/φo = 2 log(1 + ζ)/ζ (13)

The limits are,
lim
ζ→0

β2
esc = 2 , lim

ζ→∞
β2

esc = 0 ,

so, despite the infinite mass of the model, the escape velocity is finite.
The circular velocity is obtained from the centrifugal equilibrium condi-

tion:

v2
c/r = −F (r) =⇒ β2

c = −ζF(ζ) =
(1 + ζ) log(1 + ζ) − ζ

ζ(1 + ζ)
. (14)

The limits in this case are,

lim
ζ→0

β2
c ∝ ζ/2 → 0 , lim

ζ→∞
β2

c = 0 .

Notice that the rotation curve of the NFW profile rises as
√
ζ from the

center, reaches a maximum of βmax
c ≈ 0.465... at ζ ≈ 2.16258..., and then goes

down very gently, falling 10% of its peak value for ζ ≈ 6.66...
The ratio of escape velocity to circular velocity goes to infinity at the

center, while at large radii, it goes to
√

2, which is the Keplerian value (Fig. 5).
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Fig. 5. NFW escape (upper curve) and circular (lower curve) velocities

3.6 Velocity Dispersion

Up to now, all the properties that we have derived from the NFW profile have
not required information about the velocity distribution of the model. Even
the escape and circular velocities that we have derived, are not diagnostics of
the velocity distribution, but rather characterizations of the potential.

The question thus arises as to the range of variations that are possible in
the velocity distribution as a function of position for the NFW profile. This is
an important issue, because at least in the case of luminous elliptical galaxies,
although there is some homogeneity in the surface brightness profiles and
isophotal shapes, there is a wider range of variation in the velocity dispersion
profiles. This can be interpreted as changes in the velocity distribution, or in
the mass to light ratio. We will explore the first possibility.

One possible approach is to build appropriate dynamical models by finding,
by whatever means may be available, the range of phase-space distributions
f(r,v), which project onto the same ρ(r) when integrated over velocity space.

Another, more limited but simpler approach which is quite useful, is to
use Jeans’ equations to impose restrictions, not in the velocity distribution
but in its moments, in particular in the velocity dispersion. We will assume
no net rotation and a velocity distribution that is invariant under rotations.
The two components of the tangential velocity dispersion are then equal:

σθ = σφ ,

and the velocity ellipsoid everywhere can be characterized by its radial velocity
dispersion, σr, and an anisotropy parameter:

β ≡ 1 − σ2
θ/σ

2
r . (15)

Notice that β is negative when tangential motions dominate, it goes to 0 for
the isotropic case, and can reach up to 1 for the purely radial motion case.
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In spherical coordinates, the Jeans equation that corresponds to the 2nd

moment of Boltzmann’s equation is (7) and (15):

1
ρ

d
dr

(ρσ2
r ) + 2β

σ2
r

r
= −dφ

dr
. (16)

Isotropic Case

The first case we will study is the model whose velocity distribution is isotropic
everywhere. From the Jeans’ equation in spherical coordinates for an isotropic
(in velocity space) model, we can obtain the 1-dimensional velocity dispersion
as a function of position ((16) with β = 0):

1
ρ

d
dr

(ρσ2) = −dφ
dr

=⇒ σ2(r) = − 1
ρ(r)

∫ ∞

r

ρ(r′)
(

dφ
dr′

)
dr′ .

In dimensionless form, this equation is,

χ2
iso(ζ) = − 1

δ(ζ)

∫ ∞

ζ

δ(ζ′)
(

dΨ
dζ′

)
dζ′ ,

where we have defined the dimensionless velocity dispersion as χiso ≡ σ/
√
φo.

Using our previously defined dimensionless density and force functions (9)
and (12), we can evaluate this expression:

χ2
iso(ζ) = −ζ(1 + ζ)2

∫ ∞

ζ

1
ζ′(1 + ζ′)2

ζ′ − (1 + ζ′) log(1 + ζ′)
ζ′2(1 + ζ′)

dζ′

= −ζ(1 + ζ)2
∫ ∞

ζ

ζ′ − (1 + ζ′) log(1 + ζ′)
ζ′3(1 + ζ′)3

dζ′ . (17)

The integrand is a function, positive everywhere, that diverges as ζ−1

at the origin and approaches zero for large radii. We can not integrate it
analytically but we can do so numerically (Fig. 6).

The velocity dispersion of the isotropic model goes to zero at the origin
and at large radii while it reaches a maximum of χiso ≈ 0.30707 at ζ ≈ 0.7625.

The shrinking velocity dispersion at the center is a result of the mild
divergence of the density cusp, diverging as ρ ∝ ζ−1. We can see this as
follows: the equation we used to obtain σ(r) can be written as:

ρ(r)σ2(r) =
∫ ∞

r

ρ(r′)F (r′) dr′ ,

with the left hand side being the local amount of kinetic energy per unit
volume, or local pressure. The right hand side is the force per unit volume,
integrated on a radial column from the local position all the way to infinity;
this is the force per unit area that the local element has to support. Now, in
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Fig. 6. NFW isotropic velocity dispersion

a spherical distribution of mass, the force goes as the enclosed mass divided
by radius squared and the enclosed mass goes as the density times the radius
cubed:

F (r) ∝ Mr

r2
∝ ρ r3

r2
∝ ρ r =⇒

∫
ρF dr ∝ ρ2r2 ,

so the local pressure ρσ2 has to go as ρ2r2, or σ2 ∝ ρr2. If we assume that
ρ ∝ rα, it is clear that as r → 0 we have:

α > −2 =⇒ σ2 → 0 ,

α = −2 =⇒ σ2 → constant ,
α < −2 =⇒ σ2 → ∞ ,

so a cusp steeper than r−2 is required to force a divergent central isotropic
velocity dispersion. Another way of looking at this is that you need to pack a
lot of mass at the center, so that the resulting gravitational force makes the
local velocity dispersion to soar without bound.

Radial Case

As an extreme case, we will now explore the possibility of building an NFW
model in which all orbits are radial. This would maximize the observed central
velocity dispersion. In principle, one can solve the relevant Jeans’ equation for
the general case (β �= 0) as follows. We begin multiplying both sides of (16)
by ρ r2:

r2 d
dr

(ρσ2
r ) + 2βr (ρσ2

r ) = −ρ r2 dφ
dr

,

our next step is to realize that,

d
dr

(r2ρσ2
r) = r2 d

dr
(ρσ2

r ) + 2r(ρσ2
r ) .
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The first equation can then be written as,

d
dr

(r2ρσ2
r) − 2r(ρσ2

r ) (1 − β) = −ρr2 dφ
dr

=⇒
d
dr

(r2ρσ2
r) = ρr2

[
2σ2

r

r
(1 − β) − dφ

dr

]
,

from which we finally obtain (β = 1),

σ2
r (r) = − 1

r2ρ(r)

∫ ∞

r

r′2ρ(r′)
dφ
dr′

dr′ . (18)

Our next step would be to write the dimensionless form of this equation
and substitute the appropriate functions for the density and potential of the
NFW model. This can be done and, indeed, it gives an answer that diverges
strongly at the center. However, it is important to emphasize that, although
the Jeans’ equation can be solved, the implied solution may not be physical.

In the particular case of purely radial orbits, we should realize that we are
putting a strong constraint on the central density: since all orbits are radial,
all go through the center, and so the central region must accommodate all
particles, although not at the same time. It can be proved that the solution
obtained from the Jeans’ equation for the purely radial orbit in the NFW
case, implies a phase-space distribution function that becomes negative at the
center, which something is clearly non-sensical. This is the mathematical way,
of the formal solution, to accommodate all particles on radial orbits within a
central cusp that does not diverge quickly enough.

We will examine in more detail this question and derive a general lower
limit to the rate of divergence that a central cusp must have to accommodate a
population of particles on radial orbits. The relation between the phase-space
distribution function and the spatial density is:

ρ(r) =
∫

f(r,v) d3v .

In a system that is integrable, the distribution function f(r,v) should be
expressible as a function of the integrals of motion (Jeans’ Theorem). Now,
if the system is invariant with respect to spatial rotations, then we can use
f = f(E,L2), since the energy E and the magnitude (squared) of the angular
momentum L are invariant with respect to rotations. We can then write the
density as,

ρ(r) =
∫

f(E,L2) d3v = 2π
∫ ∞

−∞
dvr

∫ ∞

0

vt dvt f(v2
r/2 + v2

t /2 + φ, r2v2
t ) ,

where we have separated the integration over velocity space in two parts, one
over the radial direction (vr) and the other over the tangential plane (vt).

Now, because we are building a model with radial orbits only, the phase-
space distribution function can be written as:
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f(E,L2) = g(E) δ(L2) = g(v2
r/2 + φ) δ(r2v2

t ) ,

where the radial velocity dependence is in the g function and that of the
tangential velocity is in the Dirac δ function:

δ(x) = 0 ∀x �= 0,
∫

δ(x) dx = 1 .

The density integral can then be split in two factors:

ρ(r) = 2π
∫ ∞

−∞
g(v2

r/2 + φ) dvr

∫ ∞

0

δ(r2v2
t )vt dvt .

To integrate on the tangential velocity we change the integration variable:
x = r2v2

t ⇒ dx = 2r2vt dvt, to obtain:∫ ∞

0

δ(r2v2
t )vt dvt =

1
2r2

∫ ∞

0

δ(x) dx =
1

2r2
.

Putting this result back in the density integral, we have:

ρ(r) =
π

r2

∫ ∞

−∞
g(v2

r/2 + φ) dvr =⇒ r2ρ(r) = π

∫ ∞

−∞
g(v2

r/2 + φ) dvr .

Let’s assume that at the center, the density profile behaves as ρ ∝ rα,
then it is clear that r2ρ(r) → 0 for α > −2, forcing the left hand side of our
result to go to zero at the origin. However, the right hand side is an integral
over g(E), which is a positive function, and so the only way that this integral
can be zero is if g(E) = 0, which gives no model! So, we conclude that the
only way to build a dynamical model having only radial orbits, is to have a
central density cusp that diverges at least as fast as 1/r2 at the center. The
NFW profile does not satisfy this condition and so no radial orbit model is
possible.

Tangential Case

The opposite extreme to a radial orbit model is one with tangential motion
only. In a spherical model, this means that all orbits are circular and so no
radial mixing exists. Such a model is always possible, since we are free to put
as many stars as required by the density profile at each radius. It is easy to
see that in this case, the phase-space distribution function is:

f(r, vr, vt) =
1
π
ρ(r) δ(vr) δ(v2

t − v2
c ) , (19)

where vc is the local circular velocity (14).
In this case, (7) reduces to σ2

t = r(dφ/dr) and so, the tangential velocity
dispersion is simply the circular velocity,

χ2
tan(ζ) = β2

c (20)

A word of caution is appropriate here: just because we can find a solution,
does not imply that it is stable. This is particularly critical for models built
with circular orbits only.
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Fig. 7. Projection on the plane of the sky, with r the 3D radius, R the projected
component on the plane of the sky radius and z the corresponding along the line of
sight

3.7 Projected Properties

So far we have obtained 3D information about the NFW profile. What is
observed, however, is projections on the plane of the sky. So we now proceed
to obtain the projected versions of the density and velocity dispersion profiles.

Projected Density

Having computed the velocity dispersion for the isotropic and tangential ver-
sions of the NFW profile, we can now compute the line of sight velocity dis-
persion. Our first step is to obtain the projected density as an integral over
the line of sight:

Σ(R) =
∫ ∞

−∞
ρ(r) dz = 2

∫ ∞

R

ρ(r)
r dr√
r2 − R2

,

where R is the projected distance on the plane of the sky and z is along the
line of sight (see Fig. 7).

Defining a dimensionless projected radius as η ≡ R/ro, and using our
dimensionless functions, we cast the previous equation in dimensionless form:

Σ(r) = 2
∫ ∞

η

ρoδ(ζ) roζ

ro

√
ζ2 − η2

ro dζ = 2ρoro

∫ ∞

η

δ(ζ)ζ√
ζ2 − η2

dζ .

We can now define a dimensionless projected density as,

Γ(η) ≡ Σ(R)/(2ρoro) .

In the case of the NFW profile, we get (Fig. 8):

Γ(η) =
∫ ∞

η

dζ
(1 + ζ)2

√
ζ2 − η2

=
1

η2 − 1
− arcsec(η)

(η2 − 1)3/2
. (21)

Caution should be used for η < 1, where numerator and denominator in
the second term are imaginary, but the result is real and finite. In this range,
it is preferable to use an equivalent form with only real values:1

1 To get the second form we use arcsec(z) = −i ln[(1 +
√

1 − z2)/z].
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Fig. 8. NFW projected density

Γ(η) =
1

η2 − 1
+

1
(1 − η2)3/2

ln

(
1 +
√

1 − η2

η

)
, 0 ≤ η ≤ 1 . (22)

We also note that as η → 1, Γ → 1/3. The projected density has the following
limits:

lim
η→0

Γ(η) = ∞, lim
η→∞Γ(η) = 0 .

Projected Velocity Dispersion

We can now compute the projected velocity dispersion for the isotropic and the
purely tangential orbits cases. This can be done using the following expression:

σ2
p(R) =

2
Σ(R)

∫ ∞

R

ρ(r)σ2
los(r,R) r√
r2 −R2

dr ,

where σlos(r,R) is the line of sight velocity dispersion, on a volume element
at distance r from the center along the line of sight, at projected distance R.
Elementary geometry (Fig. 9) shows that it can be written as,

σ2
los(r,R) =

(
1 − R2

r2

)
σ2

r (r) +
(
R2

2r2

)
σ2

t (r) ,

Line of sight σr

σt

σlos

r

z

R

Fig. 9. Projection along the line of sight σlos of the local radial σr and tangential
σt velocity dispersions
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where σr(r) and σt(r) are the radial and tangential velocity dispersions at r.
We see that in the isotropic case,

σ2
t = 2σ2

r =⇒ σ2
los(r,R) = σ2

r .

The projected squared velocity dispersion in the isotropic case is then,

σ2
p−iso(R) =

2
Σ(R)

∫ ∞

R

ρ(r)σ2
r (r) r√

r2 −R2
dr ,

or in dimensionless form,

χ2
p−iso(η) =

1
Γ(η)

∫ ∞

η

δ(ζ)χ2
iso(ζ) ζ√

ζ2 − η2
dζ , (23)

where χ2
iso is given by (17).

In the tangential case we have,

σ2
p−tan(R) =

2
Σ(R)

∫ ∞

R

ρ(r) (R2/2r2)σ2
t (r) r√

r2 −R2
dr ,

and in dimensionless form,

χ2
p−tan(η) =

η2

2Γ(η)

∫ ∞

η

δ(ζ)χ2
tan(ζ) ζ

ζ
√
ζ2 − η2

dζ , (24)

where χ2
tan is given by (20).

In both cases the projected squared velocity dispersion rises from the cen-
ter to a maximum at η ∼ 0.6 (isotropic case) or η ∼ 2.5 (tangential case) and
then decreases steadily for larger distances (Fig. 10).
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Fig. 10. NFW projected squared velocity dispersion for the isotropic (solid) and
tangential (dashed) models
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4 Other Interesting Profiles

There are two very useful, but still simple profiles, that have been used ex-
tensively. These are the Jaffe ( [33, 37]) and the Hernquist ( [6, 28]) profiles:

ρJ(r) = (M/4πr3
o) (r/ro)−2 (1 + r/ro)−2 , (25)

ρH(r) = (M/2πr3
o) (r/ro)−1 (1 + r/ro)−3 . (26)

Here M is the total mass and ro is a scale-length whose physical meaning
is different in each case. Notice that these two profiles behave as ρ ∝ r−4

at large radii, as opposed to the shallower NFW profile. This behaviour has
been found in N -body simulations of perturbed galaxies when they are not
part of a cosmological expansion [4], and has also been observed in some real
elliptical galaxies [35].

What is the reason for a ρ ∝ r−4 profile at large radii? It is clear that any
finite mass, power-law profile, should be of the form ρ ∝ 1/r3+ε, with ε > 0
at large radius, however, why the particular −4 exponent?

The distribution function of an isolated, steady-state, galaxy is such that
the number of stars N(E) with energy between E and E +dE goes to zero at
E = 0, where the energy boundary of the system lies. However, when a galaxy
suffers an external perturbation, like the tidal force of a passing galaxy, the
external layers of the perturbed galaxy heat up and a continuous non-zero
distribution of stars at the zero energy boundary develops. We will show that
this ensures a ρ ∝ r−4 tail at large galacto-centric distances (Fig. 11).

Proposition 1. If a spherical galaxy with finite mass, no rotation and
isotropic velocity distribution, develops a finite, non-zero population of par-
ticles at E = 0, then the tail of the density profile at large radii will exhibit a
ρ ∝ r−4 behaviour.

Proof. The energy distribution is given by,2

N(E=0) ≠ 0

N(E)

E

0

Fig. 11. Initial (lower) and perturbed (upper) energy distribution

2 It is important to distinguish between f(E) and N(E). The former is the fraction
of stars per unit phase-space volume, d3rd3v, while the latter is the fraction of
stars per unit interval in E. f may be very large at some energy, but if the
corresponding volume between E and E + dE is tiny, N will be small.



Dynamics of Galaxies and Clusters 89

N(E)dE =
∫

ΩE

f(r,v) d3r d3v = 16π2

∫
ΩE

f(E) r2dr v2dv , (27)

where ΩE is the volume in phase-space with energy between E and E + dE
(Fig. 12), and we have used the isotropy of f in r and v.

As f is a function of E only, it is convenient to change the integral to

N(E)dE = 16π2

∫
ΩE

f(E) r2v2 ∂(r, v)
∂(r, E)

drdE .

Since the Jacobian is equal to 1/v, we get

N(E)dE = 16π2 f(E)dE
∫ rE

0

r2v dr = f(E)A(E) dE ,

where we have taken f(E) out of the integral, since it is done at fixed energy,
rE is the largest radius that a particle of energy E can reach, and

A(E) ≡ 16π2

∫ rE

0

r2
√

2[E − φ(r)] dr ,

where we have used v =
√

2[E − φ(r)]. A(E) is the “area” of the constant
energy surface in phase-space [10].

Now, at sufficiently large radii, any spherical finite mass distribution has a
potential that approaches the Keplerian limit φ ∝ 1/r. Using this asymptotic
dependence we get,

A(E) ∝ r2 r−1/2 r = r5/2 ∝ E−5/2 .

Then, if N(E ∼ 0)dE = f(E ∼ 0)A(E ∼ 0)dE, is non–zero and finite, we
should have f(E ∼ 0) ∝ E5/2. The density can be written as,

Fig. 12. Two constant energy surfaces in phase-space for the Kepler potential. The
thick axis is the radial distance and the orthogonal plane is the velocity space. The
volume in between the surfaces is ΩE . They have been cut open for clarity
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ρ(r) = 4π
∫ 0

φ(r)

f(E)
√

2[E − φ(r)] dE

=⇒ ρ ∝ E5/2E1/2E = E4 ∝ r−4 ��
This result does not apply to the NFW profile, whose mass diverges.

5 The Orbital Structure of Spherical Potentials

We now study the orbital structure of spherical mass models. Why should
we be interested in the orbital structure of a model? There are interesting
problems where it is important to find out, for instance, the radial region
spanned by individual orbits: we may be interested in the fraction of stars in
a galactic bulge that plunge within the radius of influence of a central massive
black hole, or the effect of radial mixing in galactic metallicity gradients.

There is another, more fundamental, reason for studying orbits. At the
beginning of the XX century, the mathematician Emmy Noether proved a
result that implies that, when a potential presents a symmetry (i.e., its func-
tional form is unchanged by a spatial and/or temporal transformation), there
is a corresponding physical quantity that is conserved, when moving along the
orbits supported by the potential. For instance, energy is conserved for orbits
in potentials that are time-invariant, linear momentum is conserved when the
potential is invariant under a spatial translation and angular momentum is
conserved when we have rotational invariance.

Now, in Sect. 2 we introduced the concept of integrals of motion and
saw that the distribution function is a function of them. Clearly, the con-
served physical quantities in Noether’s result are the integrals of motion of
the collisionless Boltzmann equation (in fact, energy, and linear and angular
momentum are the so-called classical integrals of motion). Since orbits are
the set of points in phase-space where the integrals keep a constant value, the
distribution function must depend on the orbital structure of the potential.
Indeed, for steady-state, collisionless systems, orbits are the basic bricks used
to assemble them in phase-space.

5.1 A Phase-Space Portrait of Orbits

Each integral of motion defines a hyper-surface in phase-space, and orbits
move along the intersection of all of them. A system with N degrees of freedom
has a 2N -dimensional phase-space. Each integral of motion lowers by one the
dimensions of the allowed region, and thus a system with M integrals has
orbits restricted to a region of dimension 2N–M. Figure 13 shows this for the
Kepler potential. Since the direction of the angular momentum is fixed, the
motion is restricted to a plane in configuration space and we only need 2 spatial
coordinates to describe the motion (say polar coordinates r, θ). Since we can
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Fig. 13. Two integral of motion surfaces in phase-space. The view is the same as
in Fig. 12, with the tangential velocity axis running vertically. The funnel is the
constant energy surface (drawn open for clarity). The folded plane is the constant
angular momentum surface. The orbit lies at the intersection (thick line)

not draw the 4-dimensional phase-space, one coordinate must be sacrificed.
Since the potential is symmetric in θ, we drop it from the figure, knowing that
whatever we get, must be wrapped around in θ to obtain the full picture.

The intersection of the funnel-like energy surface and the bent plane angu-
lar momentum surface defines a loop in Fig. 13. It is clear that at fixed energy,
if we increase angular momentum, the bent plane moves upward and the loop
shrinks to a point that corresponds to the maximum angular momentum orbit:
the circular orbit.

Figure 13 describes orbits in any spherical potential, since E and L are
always conserved in them (using a different potential only changes details).
To get the orbit in configuration space, we must introduce the missing θ
direction sacrificing one of the velocity axes. This is shown in Fig. 14, where
the base plane is configuration space and the vertical axis is the radial velocity.
Wrapping the loop in θ results in a torus in phase-space: the invariant orbital
torus. Its projection in configuration space gives a rosette limited by two
circles whose radii are the periapsis and apoapsis.3 It can be shown that all
regular orbits move on orbital torii in phase-space, although their form, and
corresponding projection, can be very complicated.

5.2 The Lindblad Diagram

Since energy and angular momentum define the shape of orbits, in spherical
potentials, we can use them as labels to catalogue them. This is precisely the
idea behind a diagram first used by B. Lindblad in 1933.
3 In Celestial Mechanics, the apsis of an orbit is the point of maximum or minimum

distance from the center of attraction. Periapsis is the minimum distance point
while apoapsis is the maximum distance point. In this and the next section, we
will also use these terms as proxies for the actual distance at these points, as no
generally accepted term exists for them.



92 L. A. Aguilar

Vr

Fig. 14. Invariant orbital torus. The base plane is the configuration space while
the vertical axis is the radial velocity. The orbit wraps around the torus while the
projection in ordinary space traces a rosette

A Lindblad diagram is like a chart that allows us to see in one glance,
the orbital make up of any spherical model. In this section we will illustrate
its use by building the Lindblad diagram of a simple spherical model with a
flat rotation curve: the singular, truncated logarithmic potential. Its density
profile, potential function and circular velocity curve are given by,

ρ(r) =
{
v2

o/4πGr2, r < rt

0, r ≥ rt
(28)

φ(r) =
{−v2

o [1 − log(r/rt)], r < rt

−v2
o (rt/r), r ≥ rt

(29)

v2
c (r) =

{
v2

o , r < rt

v2
o (rt/r), r ≥ rt

(30)

where vo is the constant circular velocity within the truncation radius rt.
Since at a fixed energy, orbits can range in angular momentum from the

radial to the circular orbit (see 5.1) our first job is to find the locus of circular
orbits in the Lindblad Diagram, where E will be plotted on the horizontal
axis and L on the vertical one. All possible orbits will lie beneath this curve.
The energy and angular momentum of a circular orbit of radius rc is given by,

Ec = φ(rc) + v2
c/2, Lc = rcvc ,

where vc is the local circular velocity. To find Ec vs. Lc, we eliminate rc from
these equations and substitute the potential function. This gives,

Ec =
{−v2

o [(1/2)− log(Lc/rtvo)], r < rt

−(1/2) (rtv
2
o/Lc)2, r ≥ rt
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It is convenient to have the inverse relation as well,

Lc =
{
rtvo exp[(Ec/v

2
o) + (1/2)], r < rt

(rtv
2
o/2
√|Ec|), r ≥ rt .

We can now plot the locus of circular orbits in the Lindblad diagram
(Fig. 15). The axes are shown in dimensionless units. The lower horizontal
axis shows the radial position at which the potential function is equal to the
energy in the upper axis. The envelope of circular orbits goes from Lc → 0 at
the infinitely deep center of the potential well, to Lc → ∞ at infinite distance
(E → 0), denoted by the vertical dotted line.

We now introduce the concept of the characteristic parabola. Let us take
a spherical shell of radius ro and consider all orbits that touch it, but do not
cross it (Fig. 16). The condition for this to happen is (vr = 0 at r = ro),

E∗ = φ(ro) + v2
t /2 = φ(ro) + (L2

∗/2r
2
o) , (31)

where E∗ and L∗ are the energy and angular momentum of these orbits. This
is the equation of a parabola in the Lindblad diagram that opens up to the
right and crosses the E axis at φ(ro).

Figure 15 shows one such characteristic parabola. Point A is the radial
orbit that just reaches r = ro, before plunging back to the center. Point B is
the circular orbit at this radius and point C is the parabolic orbit that comes
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Fig. 15. Lindblad diagram for the singular, truncated, logarithmic potential. The
thick upper envelope is the locus of circular orbits. The thin lower curve that goes
through points A, B and C is a characteristic parabola
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Fig. 16. Orbits in Kepler potential that lie along the characteristic parabola that
corresponds to the thick red circle

from infinity and reaches the ro radius before going back to infinity. Points
along the characteristic parabola between A and B are orbits that share ro

as their apoapsis (green orbits in Fig. 16), while points between B and C are
orbits that share ro as their periapsis (blue orbits in same figure).
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A characteristic parabola splits the allowed region of the Lindblad diagram
in three regions (Fig. 15). Region I contains orbits enclosed completely by the
spherical shell of radius ro, while region III contains those that are always
outside this shell. Region II then is where the orbits that cross this shell lie.

If we draw characteristic parabola for several radial distances in the Lind-
blad diagram (Fig. 17), we produce a grid of iso-apoapsis with the segments of
the parabola between the E axis and the point where they touch the circular
orbit envelope, and iso-periapsis for the segments beyond to the E = 0 bound-
ary. Each point in the Lindblad diagram, below the circular orbit envelope
and to the left of the zero energy boundary, represents a unique bound orbit.4

The two unique characteristic parabola that go through it, define its radial
extrema. The Lindblad diagram thus provides us with a unique and complete
catalogue for all orbits in a spherical potential, arranged according to orbital
characteristics. From it, we can easily figure out the radial range of individual
orbits. Furthermore, if we actually have the form of the distribution function
as a function of E and L, we can compute from this diagram the fraction of
the model that shares some particular orbital characteristics (for this we need
to get from f(E,L) to N(E,L) in a way analogous to (27).

6 A Sticky Story: Dynamical Friction

When a massive object moves in a sea of background particles, the gravita-
tional force of the former stirs the latter; since the energy invested in producing
the stirring must come from somewhere, the impinging object losses kinetic
energy. This is a classic tale of pumping ordered motion energy into a thermal
bath.5 A classic cartoon model depicts an overdense wake in the background,
trailing the moving object and decelerating it with its own gravity.

6.1 Chandrasekhar’s Formula

S. Chandrasekhar [19] thought about this in 1942 and came with a very famous
formula that describes the situation when a massive point of mass M , moves
along a straight path with velocity v, within a uniform background of non
self-interacting and uncorrelated point particles, of individual mass m and
density ρf , with zero mean motion and velocity distribution given by f(vf ),

(dv/dt) = −16π2G2 ln(Λ) ρf (m + M)
∫ v

0

f(vf )v2
fdvf (v/v3) . (32)

The Λ is the so-called Coulomb term6 and it is given by,
4 Except for the spatial orientation of the orbital plane, line of apses and sense of

rotation.
5 If Maxwell’s demon worked here, we would talk about dynamical acceleration!
6 The name comes from Plasma Physics.
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Λ = pmaxv
2/G(m + M) , (33)

where pmax is formally the maximum impact parameter.
It is important to take a second look at the paragraph that precedes (32).

There are a lot of caveats attached to Chandrasekhar’s result. We emphasize
this, because this equation has been used, and abused, under many differ-
ent physical situations that clearly invalidate those caveats, and yet, it has
been found to provide an adequate description on many different situations,
provided some details are taken into account.

There is a rich literature in this subject, we will just mention a few ex-
amples. Tremaine and Weinberg [51], have reviewed the derivation of the dy-
namical friction formula in the context of a satellite in a bound orbit within
a spherical system. The key question here is that, in contrast to the infinite
background medium used by Chandrasekhar, background particles in reso-
nant orbits with the satellite play a very prominent role in slowing down the
satellite and can lead to unusual effects. If the satellite’s orbit decays rapidly
enough, however, Chandrasekhar’s formula remains approximately valid. Bon-
tekoe and Van Albada [14], as well as Zaristky and White [55], debated about
the global response that a satellite in a bound orbit produces in the halo of
the host galaxy and its consequences upon dynamical friction. They concluded
that the purely local description of the effect, as given by (32), is adequate.
Cora et al. [17] worried about the effect of chaotic orbits for the background
particles, and came to a similar conclusion.

Since dynamical friction is so important in the accretion process of a small
system into a larger one, we will examine it in some detail. There are important
issues here: How fast is the orbital decay? Does the orbit becomes circularized?
Can the accreting system make it all the way to the center of the host?

We begin with the Coulomb term. What exactly is pmax? In deriving (32),
an integration over impact parameters must be performed. Unfortunately,
however, such an integration diverges at the upper end. Chandrasekhar [18]
argued that an upper cut-off should be used, since distant collisions are not
isolated binary encounters, as modeled in his derivation. He used the mean
particle separation, while other authors have advocated “the distance where
the average density significantly drops”, some others, the radial distance of
the spiraling system, and yet others have used the size of the host system.
What should one do? Fortunately Λ enters into the dynamical friction for-
mula through its logarithm and this waters down our ignorance about it. In
fact, a fractional error δ in Λ, translates into a fractional error δ/ ln(Λ) in the
computed deceleration. Let us compute a specific example: (33) in astronom-
ical units can be written as,

Λ = 2.32 (pmax/kpc) (v/102 km/s)2 / (M/109M�) .

For a 109 M� satellite moving at 300 km/s, the logarithm of the Coulomb
factor varies only from 5.3 to 7.6, if we take 10 or 100 kpc for pmax, respectively.
So you can plug your favorite value for pmax and compute the dynamical



Dynamics of Galaxies and Clusters 97

friction deceleration without worrying much for Λ (some authors have turned
the problem around and measured Λ from N -body simulations [14]).

The next thing to notice in (32) is the ρf (m + M) dependence. Although
both, the mass of the object being slowed down and that of the individual
background particles appear, it is usually the case the the former is much
bigger than the latter. In this limit, we can forget about m and just say that
the deceleration is directly proportional to the mass of the massive object and
the background density. If a globular cluster decays in the galactic halo, it
really does not matter whether the halo is made up of subatomic particles,
brown dwarfs, or stellar remnants.

The final actor, in the dynamical friction play, is the integral over the
velocity distribution of the background particles. There are a couple of things
that must be noted from the outset: Firstly, dynamical friction tries to bring
massive objects to a stand-still with respect to the velocity centroid of the
background particles. This can have important consequences. Secondly, the
integral limit only goes up to the massive object speed: It is only the slower
background particles that contribute to dynamical friction (faster particles can
overtake the massive object and do not necessarily contribute to the overdense
wake).

The shape of the velocity distribution function depends on the details of
the background model, however, the overall shape is pretty much like that of
a Gaussian distribution: it peaks at the origin and then drops smoothly for
increasing velocity. Assuming a Gaussian of dispersion σ, we get Fig. 18 for
the velocity part of (32). And here is where the split personality of dynamical
friction arises: in the low velocity regime (v � σ), f is approximately constant
and the integral goes as v3; plugging this into Chandrasekhar’s formula we
get a deceleration that goes as v, just like in Stoke’s formula for the drag on a
solid object moving inside a viscous fluid. However, in the high velocity regime
(v � σ), f drops precipitously and the integral is approximately constant.
This leads to a deceleration that goes as 1/v2, opposite to your run-of-the-mill
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Fig. 18. Velocity dependence of dynamical friction assuming a Gaussian distribution
of velocity dispersion σ for the background particles
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frictional force. So dynamical friction has bipolar disorder, which makes it
work at low speeds and it becomes more efficient the faster you try to go; but
if you are going too fast, the faster you go, the less efficient it becomes.7 This
is a characteristic that is important to consider, as we examine now.

6.2 Dynamical Friction in an NFW Profile

An elongated orbit goes fastest near its periapsis and slowest near its apoapsis.
Indeed, it needs to go faster that the local circular velocity at periapsis to
climb up from that point. Similarly, it goes slow with respect to the local
circular velocity at apoapsis, to fall down from this point. If the whole span
in velocity of an elongated orbit is such that it remains to the left of the
peak in Fig. 18, dynamical friction will be more efficient at periapsis and the
orbital eccentricity will increase. If on the contrary, it remains to the right,
the eccentricity will decrease. Orbits that straddle the peak can go either way.

Let us examine the situation for the NFW profile that we explored in
Sect. 3. Figure 19 shows the escape and circular velocities, normalized to the
velocity dispersion for the isotropic model. If a satellite spirals, following an
orbit close to circular, it will move from right to left along the circular velocity
curve. We can see that as its orbit shrinks from far away, dynamical friction
behaves inversely with velocity and its efficiency increases as vc/σ steadily
approaches peak efficiency at ζ ∼ 0.771...; past this point, dynamical friction
enters the Stoke’s regime, but its efficiency shrinks to zero as vc/σ goes to
zero at the center.

If we now have a satellite that plunges to its periapsis along a parabolic
orbit, it will follow the escape velocity line in Fig. 19. In this case, dynamical
friction will remain in the regime that scales inversely with velocity. Since v/σ
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Vesc/σ, Vc/σ

Fig. 19. Escape (solid line) and circular (long dashed line) velocities, normalized
to the local isotropic velocity dispersion, for a spherical NFW model. The constant
short dashed line at v/σ = 1.3688, is where the peak of Fig. 18 occurs

7 If you are going very fast, the overdense wake trails far behind. The faster you
go, the more distant it becomes and thus its retarding effect diminishes.
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is very high at all times, dynamical friction is very inefficient. Furthermore, the
deeper the satellite penetrates on its first pass, the less drag it will experience.

A satellite on a bound, but elongated orbit, will move between the escape
and the circular velocity curves in Fig. 19. For ζ > 0.771, dynamical friction
will work in the inverse velocity regime, where orbits are circularized. Past
this point, the situation gets murky.

There is, however, a big caveat we must make before leaving this subject. In
this section we have only considered the effect of velocity in Chandrasekhar’s
dynamical friction formula. The variation of the other parameters that enter
must be accounted for, before any conclusion is reached. The variation in
background density, in particular, is important. We also have that as the
satellite moves in, it gets peeled layer by layer by the tidal force and so its
mass also changes. We will say more about this latter effect in the next section.

Before leaving the subject of dynamical friction, we want to stress the very
important role that (32) has had, and continues to have, in our understanding
of stellar and galactic dynamics. The original Chandrasekhar article [19] was
chosen to be part of a collection of fundamental papers published during the
XX century, and reprinted as the centennial volume of ApJ [1]. We encour-
age the reader to take a look at F. Shu’s commentary on Chandrasekhar’s
contribution [45].

7 The Effect of Tides

We will now take a look at a subject very familiar to sailors and careless
galaxies that venture too close to others: the tidal force. The idea behind it,
is very simple: an extended object moving within an external gravitational
field, will experience a changing force across its body. If we sit at its center of
mass, we will see a differential force acting on the rest of the body, and it is
up to the self-gravity of the object to keep itself together. From this cartoon
model it is apparent that the tidal force depends on two factors: the rate of
change of the underlying force and the size of the object:8 Ftid ∝ (dF/dr)δr.

In a Kepler potential the force decays with distance, this produces tidal
stretching along the radial direction. It is usually assumed that tides always
produce radial stretching, however, it all depends on the sign of the force
gradient. Let us assume a spherical mass model with a power-law density
profile: ρ ∝ rα. In this case, the enclosed mass within radius r goes as Mr ∝
r3+α. The gravitational force then goes as F ∝ Mr/r

2 ∝ r1+α. It is clear that
for α < −1 we have the usual radial stretching. However, α > −1 produces
radial squeezing and α = −1 produces no radial deformation!
8 The gravitational force is the vector field that results from applying the −∂/∂xi

operator to the potential scalar field. The tidal force is described by the 2nd rank
tensor that results from applying the −∂2/∂xi∂xj operator to the potential. This
results in a force that may produce distortions in all directions. For simplicity,
we focus here on the radial direction only.
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Can this happen in astronomical objects? Well, a constant density core, like
that of a King model, produces radial squeezing (can this help star formation
at the center of flat-core galaxies?). The NFW spherical model has a cusp
(α = −1) that produces no radial deformation, while its outer part (α = −3)
produces the usual radial stretching.

7.1 The Tidal Radius

An important concept is the so called tidal radius, usually defined as the radius
beyond which, a test particle in orbit around a satellite becomes unbound to it
and flies apart within the gravitational force field of the larger system. Direct
evidence for the existence of such radius is provided by the sharp cut-off in
the density profiles of globular clusters in our galaxy and of satellite galaxies,
like M32, trapped deep within the potential well of a larger system.

How do we compute the tidal radius? One possibility is to compute the
point at which the tidal force and the self-gravity of the object are equal. If
we assume point masses for the tide-producing object (M) and tide-distorted
object (m), we get (Fig. 20):

Fg = −Gm
r2

Ft = d
dR

(−GM
R2

)
r =

(
GM
R3

)
r

}
Ft = −Fg =⇒ 2 (rR/R)3 = m/M . (34)

rR is called the Roche limit9 and is the largest radius that a self-gravitating
object can have when immersed within an external gravitational force.

Now, is this the tidal radius? We said that it defines the region beyond
which it is not possible to have bound orbits around m; isn’t this rR?, well
no. The Roche limit is a stationary concept, no information whatsoever about
the motion of M and m is used in its derivation.

If we consider m and M to be in circular orbit around their center of
mass, besides their combined forces, we must include a centrifugal term that
arises in the co-rotating frame. The energy defined in the this frame, using
the combined potential functions of both objects, together with that of the
centrifugal term, is conserved. This is the Jacobi energy. The combined po-
tential produces a series of spherical equipotentials that surround each object

M mR r

Fig. 20. Geometry for computation of tidal radius

9 First derived by Éduard Roche in 1848.
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Fig. 21. Roche lobes for two point masses in circular orbit

close to them. As we move away, the equipotentials become elongated until we
finally arrive at the particular equipotential that goes through a saddle point,
where both lobes touch each other10 (Fig. 21). Any higher energy equipo-
tential surrounds both masses. Since this particular equipotential is the least
bound that encloses separately either object, no particle with Jacobi energy
less than it can escape.

The distance from either point mass to the saddle point is its so-called
Roche lobe radius (it is also called the Hill radius, since George Hill discovered
it independently of Roche). Its magnitude is given by,

3 (rH/R)3 = m/M . (35)

Comparing with (34), we see that the Roche limit and Hill radius have exactly
the same functional form and differ only by a factor of 2/3. The important
thing to consider is that both can be cast as an argument that relates densities:
the average density of M , within the orbit of m, and the average density of
m within its limiting radius:11 〈ρM (R)〉 ∝ 〈ρm(rR,H)〉.

Which one should we use? Well, the Hill radius has additional dynamical
information and we may be tempted to use it as a bona fide tidal radius.
Unfortunately, there are additional complications to consider. First of all, the
criteria that define the Roche limit and the Hill radius lead to non-spherical
regions, so strictly speaking, these radii are direction dependent additionally,
the dynamics in the co-rotating frame is complicated by the appearance of
the Coriolis term, which can not be expressed as the gradient of a potential
function. As a result of this, an orbit whose Jacobi energy exceeds that of the
Roche lobe does not necessarily escapes. In fact, the region just beyond the
Roche Lobe becomes so complex, that some authors have characterized it as
“fractal” [39] (see Fig. 2 in this reference for an example of a hovering orbit
that ends up escaping). In fact, it was a study of the three-body problem,
that lead H. Poincaré to discover what we now call “chaos”.

10 This is the L1 Lagrange point. In the combined potential of a two body system
there are five points where the forces cancel. These are the Lagrangian points
first determined by Lagrange in 1772.

11 Although we are considering point masses, we define an average density within r
simply as ρ ∝ m/r3.
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7.2 The Coriolis Effect

The effect of the Coriolis term gives rise to a distinction between prograde
and retrograde orbits for particles orbiting the satellite. The distinction is
defined by the relative orientation of the orbital angular momentum of the
satellite and the particle. If they are parallel, it is a prograde orbit, if they are
anti-parallel, it is a retrograde orbit (see Fig. 22).

Now, the Coriolis acceleration is of the form ac ∝ −(ω×v), where ω is the
satellite’s angular velocity and v is the instantaneous velocity of the particle,
in the co-rotating frame. It is easy to see, using your right hand, that this
acceleration opposes the self-gravity of the satellite for prograde orbits, while
it reinforces it for retrograde orbits.

This effect makes prograde orbits more fragile and leads to net retrograde
rotation in the outer parts of a tidally pruned satellite [34], from which it
becomes necessary to define separate tidal radii for prograde and retrograde
orbits [44].

7.3 Non-Circular Orbits and Extended Mass Distributions

Even if we take into account all that we said before, our job is not finished. As
soon as the satellite moves in a non-circular orbit, the problem becomes time-
dependent and away goes conservation of energy for the orbiting particle. The
so-called elliptical restricted three-body problem, where a test particle moves
in the same plane of two point masses in an elliptical orbit around each other,
is very rich in history and has been investigated very thoroughly [49]. Although
the situation may seem hopeless, in reality it is not. It turns out that, except
at the very edge of the system, lingering orbits that end up escaping, occupy a
vanishingly small volume in phase-space and, although a bit fuzzy, a boundary
between bound and unbound orbits can be defined. A working definition of
the tidal radius can be the instantaneous Hill radius, or its value at peripasis,
where the tidal effect is largest and mass loss peaks [38]. A tidal radius valid
for point masses in an elliptical orbit around each other is [32],

rt

RPeri
=

2
3

(
m

(3 + e)M

)1/3

, (36)

Fig. 22. Prograde and retrograde orbits around a satellite
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where RPeri is the distance between M and m at periapsis and e is the orbital
eccentricity. Comparing with (35), we see that in the limit of circular orbits,
rt is a factor 2/3 smaller that rH . This is because our calculation of rH was
done along the radial direction, whereas rt represents an average value.

Another complication is that in our discussion of the tidal radius we have
assumed point masses, and this is not the case when a globular cluster, or satel-
lite galaxy, move inside the halo of a large galaxy. Fortunately, this problem is
easier to remedy. The potential produced by the extended mass distributions
should be used when calculating the tidal radius. An expression valid for a
point mass satellite, moving within a flat rotation curve galaxy is [32],

rt

RPeri
=

2
3

[
1 − ln

(
2RPeri

RPeri + RApo

)]−1/3 (
m

2MP

)1/3

. (37)

RApo is the separation between the centers of the galaxy and the satellite at
apoapsis and MP is the galaxy’s mass enclosed within RPeri. An even more
general formula, valid for galaxies with power-law density profiles, can be
derived [44].

Before leaving this section, we mention that for very elongated orbits, the
tidal force varies abruptly near periapsis. Besides the mass shed due to the
much diminished tidal radius, a new effect appears: tidal shocking. We will
examine this phenomenon in the next section.

8 Tidal Encounters

Anyone who has been unfortunate enough to have suffered a collision in the
highway will tell you that it is a shocking experience. It is the same for galaxies.
However, a key difference between collisions in the highway and collisions in
your galactic backyard, is that in the former, we have physical contact and the
larger the relative velocity, the bigger the damage. In the astronomical case, we
have long range interactions, where the larger the relative velocity, the shorter
the interaction time and less damage will occur. This is an important lesson:
if you are a galaxy, zip by very fast when traversing crowded environments,
like rich clusters of galaxies, if you want to survive the experience.

Both, dynamical friction and the tidal force dissipate encounter orbital
energy and dump it within the thermal reservoir of internal motions of the
hapless galaxies. The action of the tidal force, in this context, is a bit different
from what we saw in the last section. In that case, we examined the static
effect of the tidal force, which basically leads to the imposition of a boundary.
When we have an encounter, the time-varying part of the tidal force heats up
the interacting systems (this is often called tidal shocking [41]). In any case,
at this point the distinction between these forces becomes a semantic issue
and we must look for a more holistic description.

A gravitational encounter is a very complicated phenomenon [8]. It is il-
luminating just listing the reasons for this. Imagine a perturber passing close
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to a target system (it doesn’t matter which one is which). As the perturber
passes nearby, its time-varying gravity perturbs the motion of the stars in the
target, which in turn perturb the perturber in a manner different to what
you would have guessed, if you had not taken into account this back reaction.
Since the situation is symmetric, the same goes when you place yourself in the
other galaxy. It is this coupling of perturbations that makes any analytical
treatment hopeless (except for very specific settings) and we must turn to
N -body simulations.

With simulations the problem is availability of computer time (as always!).
Even with the impressive advances in computational technology, predicated
by Moore’s law, we lack computer cycles to tackle some basic issues in a
comprehensive manner that may give us a proper statistical description. You
may have seen a lot of computer simulations of galaxy collisions out there, but
do you know what is the range of parameters that lead to mergers when two
galaxies interact (the capture cross section)? If you search in the literature
you will find that a lot of parameter space remains to be explored, particularly
in the intermediate mass ratio regime [15]. The basic problem is the vastness
of the parameter space that uniquely defines a galactic encounter [7], and so
it is difficult to undertake a proper exploration that could give us a good
statistical description of the problem.12 So, fortunately for us, a lot of work
remains to be done.

8.1 A Simplified Picture: The Impulse Approximation

Even if a full N -body experiment may be needed to study galactic encounters,
some basic physical insight can be gained by using an approximation, with
a rich history in stellar and galactic dynamics since it was introduced: the
impulse approximation [47].

In this approximation, we assume that a perturber of mass Mp moves at
constant speed vcol along a straight path, so fast, that we can neglect the
motion of stars in the target system. Figure 23 gives the basic geometry.

The impulse in the velocity of the target star is obtained by integrating
the component of the gravitational force of the perturber that is orthogonal
to the path, along the entire path:

Δv∗ =
∫ ∞

−∞
a⊥ dt = 2

∫ ∞

o

GMP

r2

p

r
dt .

Simple geometry allows us to compute this integral,

Δv∗ =
(

2GMP

pvcol

)
. (38)

12 The dynamics of clusters of galaxies may benefit from the approach used to
understand the dynamics of globular clusters, where all the complicated dynamics
of binary scattering was synthesized in a few interaction cross sections [30].
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Mp

pr

vcol

Fig. 23. Encounter geometry for impulse approximation

An easy way to remember this result, and give physical meaning to it, is
splitting it as the product of two factors, whose physical units are acceleration
and time, respectively:

Δv∗ =
(
GMP

p2

) (
2p
vcol

)
. (39)

The first factor is just the acceleration at the point of closest distance,
the second is the time it takes the perturber to travel a distance of twice the
impact parameter (Fig. 24), we will call it, the interaction time. So, here you
have it: the longer the interaction time, the larger the impulse.

There is, however, an undesired quirk in (39): what happens in the case
of a head-on collision (p = 0)? The undesired behavior arises because we
assumed a point mass for the perturber. This is easy to solve, and doing a
proper calculation for an extended mass, spherical perturber, gives the same
result, but multiplied by a correction factor given by [3],

f(p) =
∫ ∞

1

μP (pξ)

ξ2
√
ξ2 − 1

dξ , (40)

where μP(r) is the mass fraction of the perturber within a radius r. It is
easy to see that f has the right asymptotic behavior (approaches zero for an
infinitely spread perturber, and goes to unity for a point mass).

Now, to estimate the tidal heating we must obtain the change in energy
suffered by the star within the target. Since the motion of the star is neglected
in the impulse approximation, the only change is due to Δv∗,

ΔE∗ = Δ(m∗v2
∗/2) = m∗(v∗ · Δv∗) + m∗Δv2

∗/2

–1 1
t/tcol

a amax

Fig. 24. Impulse acceleration as a function of time (thick line). The equivalent step
function (thin line), has the same area under it
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The first term averages to zero when integrating over all stars in the tar-
get.13 so we are left with the quadratic term. Integrating it, we get,

ΔE =
1
3

(
2GMPf(p)

p2vcol

)2

〈r2〉 , (41)

where 〈r2〉 is the mean of the squared radial distance of all stars in the target.

8.2 A Tale of Two Timescales: Adiabatic and Impulsive Regimes

Spitzer did not introduce (41), he went a bit beyond. He knew that the motion
of stars in the target system should be considered, even if very crudely. He
modeled these stars as harmonic oscillators and casted the encounter as a
standard problem in Classical Mechanics: the forced harmonic oscillator [48].

He found that the efficiency for energy transfer to the oscillator varies
dramatically as a function of an adiabatic parameter given by,

β =
2p
vcol

(
GMs

r3

)1/2

, (42)

where Ms is the target mass. This parameter is proportional to the ratio of
the interaction time to the oscillator period (local orbital time). And here
is where our tale of two timescales begins: When β < 1, the encounter is
fast with respect to the natural period of the oscillator, while for β > 1, the
encounter is slow. Spitzer found that the energy transfer efficiency could be
described by a multiplicative factor η that decays exponentially with β [48].
Weinberg has reviewed this problem, removing the 1-dimensional treatment
used by Spitzer and taking into account the effect of resonances. He found
a function that decays as a power-law [52]. Both corrections approach unity
for β → 0, this is the impulsive regime that we saw in Sect. 8.1. For β >
1, both correction factors shrink rather quickly, this is the adiabatic regime
(Fig. 25).

Equation (41) should then be multiplied by a net shock efficiency, obtained
as a mass-weighted average of η over the whole target [5],

η∗ =
4π

〈r2〉Ms

∫ rt

0

ρs(r)η(β)r4 dr (43)

Why is that the amount of energy transfer diminishes so rapidly as we
enter the adiabatic regime? This has to do with adiabatic invariants, a subject
discussed by Einstein at the first Solvay Conference in 1911. The basic idea is
that when a dynamical system undergoes a change that is slow with respect
to its internal timescale, there are properties of the motion that will remain
invariant, these are the actions (see [25], Sect. 12.5). Here is a cartoon answer:

13 For this argument to work, we must include escaping stars.
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Fig. 25. Adiabatic correction of Spitzer (solid line) and Weinberg (dashed line) [24]

when a perturber encounters a slow star, the star sweeps only a fraction of
its orbit while the encounter takes place, which can then be distorted. On the
other hand, a fast star covers many periods and so it appears to the perturber,
not as a point mass, but as a mass spread over the whole orbit. The perturber
then can only push the orbit as a whole (Fig. 26).

This effect can clearly be seen in Fig. 27, which shows an old N -body sim-
ulation of the effect of a hyperbolic encounter on a de Vaucouleurs galaxy. The
perturber was launched directly across the frame but is deflected downward
during the encounter. The halo of the target reacts impulsively and absorbs
energy that leads to its heating up and expanding without any appreciably
overall displacement. The inner core of the target, on the contrary, hardly
expands but is displaced as a whole from its original position, leaving behind
the halo that becomes unbound. This is called tidal stripping.

At the end, we must get a copy of an N -body code and run our own
simulations. However, a close examination of the impulse approximation and

Fig. 26. The same encounter can be impulsive for a star in the outskirts of a target
galaxy and adiabatic for one in its central region. In the first case, the orbit of the
star gets distorted, in the second, it gets pushed as a whole
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a b c

d e f

Fig. 27. N-body simulation of the hyperbolic encounter of two de Vaucouleur galax-
ies. The perturber is represented by the filled circle of radius equal to its effective
radius. The frames are set 2 crossing times (at the effective radius) apart [3]

knowledge about what to expect in the impulsive and adiabatic regimes, can
help us understand the results we obtain.14

9 Putting Things Together: The Orbital Decay
of a Satellite within an Extended Halo

In this section we put together a bit of what we have learned about dynamical
friction and tidal truncation, to follow a satellite whose orbit decays as it
moves within an extended halo. This problem has been treated by Binney and
Tremaine [12] (see their Sect. 7.1.1.a) for the case of a point mass satellite of
fixed mass, that spirals down a singular isothermal halo. A similar calculation
has also been made elsewhere for a constant density halo [27]. The treatment
we present here is inspired by that of Binney and Tremaine, but with the
distinction that we allow for an extended satellite and describe the shrinking
tidal radius, as it plunges into deeper layers of the host halo. Ours is a simple
model that wraps up what we have learned in Sects. 6 and 7.

9.1 The Cast of Characters

We need a model for the satellite and the host halo. Due to its simplicity, we
choose a Plummer [43] model for the satellite:

ρs(x) =
(

3Ms

4πr3
o

)
(1 + x2)−5/2 , (44)

14 “Computers are useless, they can only give you answers”. Pablo Picasso.
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φs(x) = −GMs

ro
(1 + x2)−1/2 , (45)

Ms(x) = Ms x
3(1 + x2)−3/2 , (46)

Here ρs, φs and Ms are the density profile, potential function and cumulative
mass. Ms is the total initial mass of the satellite and x ≡ r/ro, where ro is
the nuclear radius (it contains 35% of the mass). This is a model with an
approximately flat density core within ro. As we will soon see, this is a very
important feature.

For the host halo, we use a mass model that results in a flat rotation curve
(see (28), (29) and (30)). This is the same halo used by Binney and Tremaine.
Its cumulative mass, within a galacto-centric distance R, is given by:

MR = (v2
o/G)R , (47)

with vo being the constant circular velocity of the halo. Notice that both of
our models are spherical. We will use r to denote radial distances within the
satellite and R for the radial position of the satellite within the halo.

9.2 Tidal Truncation

We can now use the tidal truncation condition to find the tidal radius of
the satellite rt as a function of position within the halo. We will make the
simplifying assumption that, as the satellite travels inward within the halo
and its tidal radius shrinks, the satellite inside rt remains unaffected and it is
just the layers outside it, that are lost.

We saw in Sect. 7 that the tidal radius can be written as a condition that
relates the average density of the satellite inside its tidal radius, with the
average density of the underlying halo within the satellite orbit:

rt/R = α [Ms(rt)/MR]1/3 , (48)

where α = 22/3/3 ≈ 0.529, for the tidal radius imposed by a singular isother-
mal halo (37).15 We will assume that the satellite decays following a spiraling
orbit very close to circular, and so we only consider the case (e = 0).

Substituting the mass profile of the satellite and halo (46) and (47) in the
tidal radius condition, we get:

rt

R
= α

(
GMs

Rv2
o

)1/3
xt√

1 + x2
t

. (49)

The left hand side term can be written as,

rt

R
=

rt/ro

R/ro
=

xt

R/ro
,

15 This equation assumes a point mass satellite. We will have to live with this.
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where xt ≡ rt/ro is the dimensionless tidal radius.
Substituting this back in (49), we get,

xt = α
R

ro

(
GMs

Rv2
o

)1/3
xt√

1 + x2
t

.

This can be easily manipulated to yield,

x2
t = α2

(
GMsR

2

r3
ov

2
o

)2/3

− 1 . (50)

A bit more algebra leads to rt,

rt =

√
α2

(
GM2

s

v2
o

)2/3

− r2
o . (51)

We have thus obtained the satellite size as a function of its position within
the halo. Notice that the size shrinks to zero at a particular position Rt,
which occurs when the radical vanishes. This condition can be cast as a tidal
condition:

ro/Rt = α [Ms/MRt ]
1/3 , (52)

comparing with (48), we see that a Plummer model, dropped within a flat
rotation curve halo, will survive until its Roche lobe size (computed using
its original mass) is equal to its core radius. What is behind the existence
of a terminal galacto-centric position? As we mentioned at the beginning of
this section, the tidal radius criterion can be interpreted as a condition that
relates densities: If the satellite does not have a central density higher than
the corresponding value for the halo, it will be destroyed before reaching the
center of the halo. The density of the Plummer model does not vary much
within its core radius. Once the Roche lobe reaches it, the satellite will be
gone very soon.

The terminal galacto-centric position can be obtained from the previous
equation. It is equal to,

Rt = vo

√
r3
o

α3GMs
. (53)

Finally, the remaining satellite mass can be computed using (50) and (46) to
evaluate Ms(xt).

In astronomical units, appropriate for our problem, (51) and (53) are,

(rr/pc) =

√
1, 595

[
(Ms/106 M�)(R/kpc)2

(vo/102 kms−1)2

]2/3

−
(
r0
pc

)2

, (54)

(Rt/kpc) = 5.868 × 10−4 (vo/102 kms−1)

√
(ro/pc)3

(Ms/106 M�)
. (55)
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Fig. 28. Terminal galactocentric distance for Plummer models as a function of core
radius ro and satellite mass. Three lines of constant terminal distance are shown.
The dots correspond to globular clusters in our Galaxy. Clusters that lie on the
lower horizontal axis are core-collapsed clusters

We present in Fig. 28 the terminal galacto-centric distance as a function
of satellite mass and core radius. The halo has a characteristic velocity of
vo = 220 km s−1. Data for globular clusters in our galaxy are shown too [23].
It is clear from this figure that the vast majority of clusters are dense enough
at their centers, to survive all the way to the central region of our Galaxy, the
exception being a group of three, or maybe five clusters, of which the most
extreme example is Palomar 4.16

In Fig. 29 we show the cluster tidal radius as a function of galactocentric
position, for satellites of mass 106 and 109 M�, and in each case, for core
radii of 1, 10 and 100 pc. It is clear that all clusters of a given mass shrink
steadily in size as ∝ R2/3 until they reach close to their terminal galactocen-
tric distance, at which point, they are very quickly destroyed, this terminal
distance depending on the core radius: the smaller it is, the deeper the satellite
survives.

Finally, Fig. 30 shows the satellite mass as a function of galactocentric
position. The same three core radii of Fig. 29 are used for a satellite mass of
106 M�. We note that the ro = 1 and 10 pc curves coincide with those of a
109 M� satellite with ro = 10 and 100 pc, respectively.

Given the form of the cumulative mass distribution of the Plummer model,
it is clear that our satellites loose little mass until they approach their terminal
position, at which point they are quickly destroyed. It is then a reasonable

16 We must remember that we have modeled the dark halo only. The bulge and
galactic disk have not been taken into account.



112 L. A. Aguilar

1000

100

10

0.01 0.1 1 10 100

R (kpc)

1 pc

100 pc
10 pc

rc

10
9  M

10
6  M

r t 
(p

c)

1

Fig. 29. Satellite tidal radius as a function of galactocentric position. Two sets of
curves are shown for satellite masses of 106 and 109 M�. In each set we show the
results for three core radii (1, 10 and 100 pc). Notice the abrupt destruction when
the satellite reaches its terminal galactocentric distance

approximation to assume that the satellites evolve at fixed mass. We will use
this approximation in the next section.

9.3 Orbital Decay

We now compute the rate of orbital decay for the satellites. This decay is
driven by dynamical friction, which produces a force that opposes the motion
of the satellite (32). To apply this formula we need the halo density, which is

1
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0.01 0.1 1 10 100

R (kpc)

1 pc

100 pc
10 pc

rc

M
s(

t)
 / 

M
s (

t i)

0.01

Fig. 30. Fraction of satellite mass as a function of galactocentric position. The same
core radii as in Fig. 29 are shown, for a 106 M� satellite
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given by (28), and the velocity distribution at each radial distance, here using
a Maxwellian (see Fig. 18). These assumptions are identical to the model of
Binney and Tremaine, so we refer to their (7.23) for the retarding force:

FDF ≈ −0.428 ln(Λ)
GMs2

R2
,

where Λ is the Coulomb term (33) and R is the galactocentric position of the
satellite.

This force produces a torque τ = FDFR, for our case of a circular orbit.
The change in orbital angular momentum is then,

d
dt

(RMsvo) = −0.428 ln(Λ)
GM2

s

R
.

Strictly speaking, we should now take into account the variation in Ms

due to tidal truncation that we saw in Sect. 9.2. This, however, would greatly
complicate our model, which we want to keep simple. Furthermore, as we saw
in Fig. 30, assuming a constant mass for the satellite is not too bad, so we
will do so. Solving the resulting equation we get the galactocentric position
of the satellite, as a function of time,

R(t) =
√
R2

i − 0.856 ln(Λ)
GMs

vo
t . (56)

In astronomical units, this can be written as:

R(t)
kpc

=

√(
Ri

kpc

)2

− 0.0171 ln(Λ)
(

Ms

106 M�

)(
vo

220 kms−1

)−1(
t

Gyrs

)
.

(57)
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Fig. 31. Satellite galactocentric position as a function of time. The satellite masses
are 107 (solid lines) and 108 M� (dashed lines). Initial positions of 2, 4, 8 and 16
kpc, have been considered
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Fig. 31 shows the evolution of 107 and 108 M� satellites launched from several
initial galactocentric distances.

Our model is very simple but fulfills our pedagogical goal of introducing
the main actors that play a role in bringing down and trimming the unfor-
tunate accreting satellites. Given the observational evidence and prevailing
cosmological scenario, this is an important problem to study. In particular,
a proper coupling of mass loss due to tidal truncation and dynamical fric-
tion, must be modeled carefully. We refer the interested reader to other, more
sophisticated models, that have been introduced recently [50, 56].

10 Further Reading

For those interested in digging up some more, here is a list of recommended
readings. The literature is very rich and we have chosen just a few references
to get somebody interested started.

For Sects. 3 and 4 we recommend the following:

• Fully self-consistent anisotropic models in phase-space have been obtained
by [6] for the Hernquist profile and by [37] for the Jaffe profile.

• A very general class of models that includes the Jaffe and Hernquist mod-
els, as special cases, is presented by [20]. Most of these models can be
expressed as combinations of elementary functions.

• Many properties of spherical models with NFW profiles, including phase-
space distribution functions with various kinematics is given by [36].

• A class of self-consistent models for disk galaxies that consist of an NFW
dark halo, an exponential disk, a Hernquist bulge and even a massive
central black hole, has been introduced by [54].

For Sect. 5, we suggest the following references,

• An approximation to orbits in the Hernquist model based in epicycloids
has been obtained by [2]

• Sections 1 and 2 of [16] contain a good introduction to orbits, integrals of
motion and orbital torii.

• A good discussion of the Lindblad diagram and its application to generate
dynamical models of various degrees of eccentricities for their orbits can
be found in [37].

For Sect. 6 there is a very extensive literature. Our list of suggested refer-
ences is as follows,

• For an illuminating discussion about the subtleties and perils involved in
simulating dynamical friction with N -body codes, and whether the global
response of the background invalidates the classical Chandrasekhar for-
mula, take a look at [14, 53] and [55].
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• An examination of the effect on dynamical friction of velocity anisotropy
is found in [9] and [42].

• The effect of chaotic orbits on dynamical friction is studied by [17].
• An investigation of whether dynamical friction produces orbit circulariza-

tion can be found in [26].

For Sect. 7 there is also a very extensive literature. There is not, un-
fortunately, a good reference for the calculation of tidal forces produced by
extended objects.

• Descriptions of the tidal force and computation of the tidal radius can be
found in Chap. 5 of [48] and Sect. 7.3 of [12].

• A basic introduction to the three-body problem can be found in almost
any book on Celestial Mechanics [13]. For a lighter description check [25].

• To gain the historical perspective in the three-body problem look at [22].
This reference presents a very nice account of Poincaré’s musings about
the three-body problem and the discovery of chaos.

• A gallery of orbits that illustrates the intricacies of the three-body problem
can be found in Fig. 20.7 of [31]

• A description of the three-body problem and the tidal force, although in
the context of planetary dynamics, can be found in Sects. 2.2 and 2.6,
respectively, of [21]

• An illustrative reference that plots the magnitude of the Coriolis, centrifu-
gal and gravitational terms in the co-rotating frame of reference for the
restricted three-body problem is [34]

• For an up-to-date re-examination of the tidal radius take a look at [44]

For Sect. 8, we suggest the following,

• The first N -body simulation of an encounter between galaxies was done
by E. Holmberg in 1941. It is interesting to see how this author was able
to do the simulation at a time when no computers were available to him
[29].

• A review of the field of N -body simulations of galactic encounters can be
found in [8]

• A detailed description of the impulse approximation together with Spitzer
correction for adiabaticity can be found in Sect. 5.2 of [48]

• An example of the use of the impulse approximation, with Weinberg cor-
rection for adiabaticity for the problem of globular cluster survival in our
Galaxy, can be found in [24]

For Sect. 9, we recommend these references,

• Our model for orbital decay has followed [12]. A similar model, but for a
flat density halo motivated by dwarf galaxies, is given by [27]

• More sophisticated, but still analytical models of the orbital decay of a
satellite, have been presented by [50] and [56]
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Finally, [12] is the standard graduate level reference for Galactic dynamics.
It is very thorough and it may contain far more than what you may need for
just a quick computation, but if you really want to dig up what is behind the
topics we have been discussing, you will find it here.

11 Some Final Words

It has been my job to give you a theoretical view of clusters of galaxies, or
rather a glimpse. I guess that if we stretch the electromagnetic spectrum a
bit, my talk fits within the title of this school: “A Panchromatic View . . . ”.
The organizers certainly think so, and asked me to do this job. We live in
the golden era of Astronomy. I am sure that you have heard this so many
times that by now it may sound like a cliché, however, it is true. Those of
us old enough to remember the time when an IR image meant laboriously
taking readings with your bolometer on a 10× 10 sampling array on the sky,
will tell you so. However, with the current deluge of observational information
comes the task of making sense of all of it, and for this we need theoretical
understanding. It is appropriate here to quote a Philosopher of old times,

Oι αδαείς, ελαφρóμυαλoι άνθρωπoι,
πoύ θαρρoύν πως η Aστρoνoμία μαθαίνεται
μoνάχα κoιτάζoντας τ ′ αστέρια
δίχως τ ή βαθιά γνώση τών μαθηματικών,
θά καταλήξoυν στή μέλλoυσα ζωή πτηνά . . .

Πλάτων, T ίμαιoς

Innocent light minded men,
who think that Astronomy can be learnt
by looking at the stars without knowledge
of Mathematics will, in the next life, be birds . . .

Plato (Timaeus)

Dynamics is one of the pillars of Classical Physics. Given the spread of
Gravity in the Universe, its application in Astronomy is only natural. In fact, a
“good dynamical intuition” ought to be second nature to Astronomers. I hope
that these lectures help students a bit to move in this direction, motivating
them to explore dynamical aspects of Galaxies, even if, and specially if, they
are not theoreticians.

I want to thank Omar López, Manolis Plionis and David Hughes for invit-
ing me and organizing a wonderful “Gullermo Haro” school. INAOE for pro-
viding a beautiful environment to ponder these matters about far away galax-
ies, within a setting rich in history and cultural heritage. I also want to thank
the students who had to suffer my lectures and then wait for me to produce
these notes.
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1 Introduction

Taken literally, galaxy clusters must be comprised of an overdensity of galax-
ies. Almost as soon as the debate was settled on whether or not the “nebu-
lae” were extragalactic systems, it became clear that their distribution was
not random, with regions of very high over- and under-densities. Thus, from
a historical perspective, it is important to discuss the detection of galaxy
clusters through their galactic components. Today we recognize that galaxies
constitute a very small fraction of the total mass of a cluster, but they are
nevertheless some of the clearest signposts for detection of these massive sys-
tems. Furthermore, the extensive evidence for differential evolution between
galaxies in clusters and the field means that it is imperative to quantify the
galactic content of clusters.

Perhaps even more importantly, optical detection of galaxy clusters is now
inexpensive both financially and observationally. Large arrays of CCD detec-
tors on moderate sized telescopes can be utilized to perform all-sky surveys
with which we can detect clusters to z ∼ 0.5. Using some of the efficient tech-
niques discussed later in this section, we can now survey hundreds of square
degrees for rich clusters at redshifts of order unity with 4-m class telescopes,
and similar surveys, over smaller areas but with larger telescopes are finding
group-mass systems to similar distances.

Looking to the future, ever larger and deeper surveys will permit the char-
acterization of the cluster population to lower masses and higher redshifts.
Projects such as the Large Synoptic Survey Telescope (LSST) will map thou-
sands of square degrees to very faint limits (29th magnitude per square arc-
second) in at least five filters, allowing the detection of clusters through their
weak lensing signal (i.e., mass) as well as the visible galaxies. Ever more
efficient cluster-finding algorithms are also being developed, in an effort to
produce catalogs with low contamination by line-of-sight projections, high
completeness, and well-understood selection functions.
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This chapter provides an overview of past and present techniques for op-
tical detection of galaxy clusters. It follows the progression of cluster detec-
tion techniques through time, allowing readers to understand the development
of the field while explaining the variety of data and methodologies applied.
Within each section (Sect. 2) we describe the datasets and algorithms used,
pointing out their strengths and important limitations, especially with respect
to the characterizability of the resulting catalogs. The next section provides a
historical overview of pre-digital, photographic surveys that formed the basis
for most cluster studies until the start of the 21st century. Section 3 describes
the hybrid photo-digital surveys that created the largest current cluster cata-
logs. Section 4 is devoted to fully digital surveys, most specifically the Sloan
Digital Sky Survey and the variety of methods used for cluster detection. We
also describe smaller surveys, mostly for higher redshift systems. In Sect. 5
we give an overview of the different algorithms used by these surveys, with an
eye towards future improvements. The concluding (Sect. 6) discusses various
tests that remain to be done to fully understand any of the catalogs produced
by these surveys, so that they can be compared to simulations.

2 Photographic Cluster Catalogs

Even before astronomers had a full grasp of the distances to other galax-
ies, the creators of the earliest catalogs of nebulae recognized that they were
sometimes in spectacular groups. Messier and the Herschels observed the com-
panions of Andromeda and what we today know as the Pisces-Perseus super-
cluster. With the invention of the wide-field Schmidt telescope, astronomers
undertook imaging surveys covering significant portions of the sky. These
quickly revealed some of the most famous clusters, including Virgo, Coma, and
Hydra. The earliest surveys relied on visual inspection of vast numbers of pho-
tographic plates, usually by a single astronomer. As early as 1938, Zwicky [64]
discussed such a survey based on plates from the 18′′ Schmidt telescope at
Palomar. In 1942, Zwicky [65] and Katz & Mulders [30] published a pair of
papers presenting the first algorithmic analyses of galaxy clustering from the
Shapley-Ames catalog, using galaxies brighter than 12.7m. Examining counts
in cells, cluster morphologies, and clustering by galaxy type, these surveys laid
the foundation for decades of galaxy cluster studies, but were severely limited
by the very bright magnitude limit of the source material. Nevertheless, many
fundamental properties of galaxy clusters were discovered. Zwicky, with his
typical prescience, noted that elliptical galaxies are much more strongly clus-
tered than late-type galaxies (Fig. 1), and attempted to use the structure and
velocity dispersions of clusters to constrain the age of the universe as well as
galaxy masses.

However, the true pioneering work in this field did not come until 1957,
upon the publication of a catalog of galaxy clusters produced by George Abell
as his Caltech Ph.D. thesis, which appeared in the literature the following
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Fig. 1. The radial distribution of elliptical and spiral “nebulae” in the Virgo cluster.
The enhanced clustering of elliptical galaxies is apparent, and is used to construct
many modern cluster catalogs

year [1]. Zwicky followed suit a decade later, with his voluminous Catalogue
of Galaxies and of Clusters of Galaxies [66]. However, Abell’s catalog remained
the most cited and utilized resource for both galaxy population and cosmo-
logical studies with clusters for over 40 years. Abell used the red plates of
the first National Geographic-Palomar Observatory Sky Survey. These plates,
each spanning ∼ 6◦ on a side, covered the entire Northern sky, to a magnitude
limit of mr ∼ 20. His extraordinary work required the visual measurement and
cataloging of hundreds of thousands of galaxies. To select clusters, Abell ap-
plied a number of criteria in an attempt to produce a fairly homogeneous
catalog. He required a minimum number of galaxies within two magnitudes
of the third brightest galaxy in a cluster (m3 +2), a fixed physical size within
which galaxies were to be counted, a maximum and minimum distance to the
clusters, and a minimum galactic latitude to avoid obscuration by interstellar
dust. The resulting catalog, consisting of 1,682 clusters in the statistical sam-
ple, remained the only such resource until 1989. In that year, Abell et al. [2]
(hereafter ACO) published an improved and expanded catalog, now including
the Southern sky. These catalogs have been the foundation for many cosmo-
logical studies over the last four decades, even with serious questions about
their reliability. Despite the numerical criteria laid out to define clusters in
the Abell and ACO catalogs, their reliance on the human eye and use of older
technology and a single filter led to various biases. These include a bias to-
wards centrally-concentrated clusters (especially those with cD galaxies), a
relatively low redshift cutoff (z ∼ 0.15; [4]), and strong plate-to-plate sensi-
tivity variations. Photometric errors and other inhomogeneities in the Abell
catalog [15, 59], as well as projection effects are a serious and difficult-to-
quantify issue [29, 39]. These resulted in early findings of excess large-scale
power in the angular correlation function [4], and later attempts to disentangle
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these issues relied on models to decontaminate the catalog ( [46, 59]. The ex-
tent of these effects is also surprisingly unknown; measures of completeness
and contamination in the Abell catalog disagree by factors of a few. For in-
stance, Miller et al. [42] claim that under- or over-estimation of richness is not
a significant problem, whereas van Haarlem et al. [60] suggest that one-third
of Abell clusters have incorrect richnesses, and that one-third of rich (R ≥ 1)
clusters are missed. Unfortunately, some of these problems will plague any
optically selected cluster sample, but objective selection criteria and a strong
statistical understanding of the catalog can mitigate their effects.

In addition to the Zwicky and Abell catalogs, a few others based on plate
material have also been produced [54], from the galaxy counts of Shane and
Wirtanen [53], and a search for more distant clusters carried out on plates
from the Palomar 200′′ by Gunn et al. ( [25]; hereafter GHO). None of these
achieved the level of popularity of the Abell catalog, although the GHO survey
was one of the first to detect a significant number of clusters at moderate to
high redshifts (0.15 < z < 0.9), and remains in use to this day.

3 Hybrid Photo-Digital Surveys

Only in the past 10 years has it become possible to utilize the objectivity of
computational algorithms in the search for galaxy clusters. These more mod-
ern studies required that plates be digitized, so that the data are in machine
readable form. Alternatively, the data had to be digital in origin, coming from
CCD cameras. Unfortunately, this latter option provided only small area cov-
erage, so the hybrid technology of digitized plate surveys blossomed into a
cottage industry, with numerous catalogs being produced in the past decade.
All such catalogs relied on two fundamental data sets: the Southern Sky Sur-
vey plates, scanned with the Automatic Plate Measuring (APM) machine [41]
or COSMOS scanner (to produce the Edinburgh/Durham Southern Galaxy
Catalog/EDSGC, [27]), and the POSS-I, scanned by the APS group [47]. The
first objective catalog produced was the Edinburgh/Durham Cluster Cata-
log (EDCC, [40]), which covered 0.5 sr (∼ 1, 600 square degrees) around the
South Galactic Pole (SGP). Later, the APM cluster catalog was created by
applying Abell-like criteria to select overdensities from the galaxy catalogs,
and is discussed in detail in [12]. More recent surveys, such as the EDCCII [9]
did not achieve the large area coverage of DPOSS (see below), and perhaps
more importantly, are not nearly as deep. For instance, the EDCCII’s limit-
ing magnitude is bJ = 20.5. For an L∗ elliptical this corresponds to a limiting
redshift of z ∼ 0.23. The work by Odewahn and Aldering [44], based on the
POSS-I, provided a Northern sky example of such a catalog, while utilizing
additional information (namely galaxy morphology). Some initial work on this
problem, using higher quality POSS-II data, was performed by Picard [48] in
his thesis.
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The largest, most recent, and likely the last photo-digital cluster survey
is the Northern Sky Optical Survey (NoSOCS; [16, 17, 21, 36]). This survey
relies on galaxy catalogs created from scans of the second generation Palomar
Sky Survey plates. The POSS-II [52] covers the entire northern sky (δ > −3◦)
with 897 overlapping fields (each 6.5◦ square, with 5◦ spacings), and, unlike
the old POSS-I, has no gaps in the coverage. Approximately half of the survey
area is covered at least twice in each band, due to plate overlaps. Plates are
taken in three bands: blue-green, IIIa-J + GG395, λeff ∼ 480 nm; red, IIIa-F
+ RG610, λeff ∼ 650 nm; and very near-IR, IV-N + RG9, λeff ∼ 850 nm. Typ-
ical limiting magnitudes reached are BJ ∼ 22.5, RF ∼ 20.8, and IN ∼ 19.5,
i.e., ∼1m−1.5m deeper than POSS-I. The image quality is improved relative
to POSS-I, and is comparable to the southern photographic sky surveys. The
original survey plates are digitized at STScI, using modified PDS scanners [33].
The plates are scanned with 15 μ (1.0′′) pixels, in rasters of 23,040 square,
giving ∼1 GB/plate, or ∼3 TB of pixel data total for the entire digital survey.
The digital scans are processed, calibrated, and cataloged, with detection of
all objects down to the survey limit, and star/galaxy classifications accurate
to 90% or better down to ∼1m above the detection limit [45]. They are photo-
metrically calibrated using extensive CCD observations of Abell clusters [18].

The resulting galaxy catalogs are used as an input to an adaptive ker-
nel galaxy density mapping routine (discussed in Sect. 5), and photometric
redshifts based on galaxy colors are calculated, along with cluster richnesses
in a fixed absolute luminosity interval. The NoSOCS survey utilizes F (red)
plates, with a limiting magnitude of mr = 20. This corresponds to a lim-
iting redshift of 0.33 for an L∗ elliptical galaxy. Because of the increase in
g–r color with redshift, the APM would have to go as deep as bJ = 22.0
to reach the same redshift from their data for early type galaxies. Similarly,
even at lower redshift, this implies that DPOSS can see ∼ 0.5m−1m deeper
in the cluster luminosity functions. Additionally, NoSOCS uses at least one
color (two filters), and a significantly increased amount of CCD photometric
calibration data. The final catalog covers 11,733 square degrees, with nearly
16,000 candidate clusters (Fig. 2), extending to z ∼ 0.3, making it the largest
such resource in existence. However, new CCD surveys, discussed in the next
section, are about to surpass even this benchmark.

4 Digital CCD Surveys

With the advent of charge-coupled devices (CCDs), fully digital imaging in
astronomy became a reality. These detectors provided an order-of-magnitude
increase in sensitivity, linear response to light, small pixel size, stability, and
much easier calibration. The main drawback relative to photographic plates
was (and remains) their small physical size, which permits only a small area
(of order 10′) to be imaged by a typical 20482 pixel detector. As detector sizes
grew, and it became possible to build multi-detector arrays covering large
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Fig. 2. The sky distribution of NoSOCS (northern sky) and APM (southern sky)
candidate clusters in equatorial coordinates. The much higher density of NoSOCS
is due to its deeper photometry and lower richness limit

areas, it became apparent that new sky surveys with this modern technology
could be created, far surpassing their photographic precursors. Unfortunately,
in the 1990s most modern telescopes did not provide large enough fields-
of-view, and building a sufficiently large detector array to efficiently map
thousands of square degrees was still challenging.

Nevertheless, realizing the vast scientific potential of such a survey, an
international collaboration embarked on the Sloan Digital Sky Survey (SDSS,
[61]), which included construction of a specialized 2.5 m telescope, a camera
with a mosaic of 30 CCDs, a 640-fiber multi-object spectrograph, a novel
observing strategy, and automated pipelines for survey operations and data
processing. Main survey operations were completed in the fall of 2005, with
over 8,000 square degrees of the northern sky image in five filters to a depth
of r′ ∼ 22.2 with calibration accurate to ∼ 2%−3%, as well as spectroscopy
of nearly one million objects.

With such a rich dataset, many groups both internal and external to the
SDSS collaboration have generated a variety of cluster catalogs, from both
the photometric and the spectroscopic catalogs, using techniques including:

1. Voronoi Tessellation [32]
2. Overdensities in both spatial and color space (maxBCG, [3])
3. Subdividing by color and making density maps (Cut-and-Enhance, [24])
4. The Matched Filter and its variants [32]
5. Surface brightness enhancements [6, 62, 63]
6. Overdensities in position and color spaces, including redshifts (C4; [43])

These techniques are described in more detail in Sect. 5. Each method gen-
erates a different catalog, and early attempts to compare them have shown
not only that the catalogs are quite distinct, but also that comparison of two
photometrically-derived catalogs, even from the same galaxy catalogs, is not
straightforward [5].
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In addition to the SDSS, smaller areas, to much higher redshift, have been
covered by numerous deep CCD imaging surveys. Notable examples include
the Palomar Distant Cluster Survey (PDCS, [49]), the ESO Imaging Survey
(EIS, [35, 62]), and many others. None of these surveys provide the angu-
lar coverage necessary for large-scale structure and cosmology studies, and
are specifically designed to find rich clusters at high redshift. The largest
such survey to date is the Red Sequence Cluster Survey (RCS, [23], based on
moderately deep two-band imaging using the CFH12K mosaic camera on the
CFHT 3.6 m telescope, covers ∼100 square degrees. This area coverage makes
it comparable to or larger than X-ray surveys designed to detect clusters at
z ∼ 1. The use of the red sequence of early-type galaxies makes this a very
efficient survey, and the methodology is described is Sect. 5.

5 Algorithms

From our earlier discussion, it is obvious that many different mathematical and
methodological choices must be made when embarking on an optical cluster
survey. Regardless of the dataset and algorithms used, a few simple rules
should be followed to produce a catalog that is useful for statistical studies of
galaxy populations and for cosmological tests:

1. Cluster detection should be performed by an objective, automated algo-
rithm to minimize human biases and fatigue.

2. The algorithm utilized should impose minimal constraints on the physical
properties of the clusters, to avoid selection biases. If not, these biases
must be properly characterized.

3. The sample selection function must be well-understood, in terms of both
completeness and contamination, as a function of both redshift and rich-
ness. The effects of varying the cluster model on the determination of
these functions must also be known.

4. The catalog should provide basic physical properties for all the detected
clusters, including estimates of their distances and some mass-related
quantity (richness, luminosity, overdensity) such that specific subsamples
can be selected for future study.

This section describes many of the algorithms used to detect clusters in
modern cluster surveys. No single one of these generates an “optimal” clus-
ter catalog, if such a thing can even be said to exist. Therefore, I provide
some of the strengths and weaknesses of each technique. In addition to the
methods discussed here, many other variants are possible, and in the future,
joint detection at multiple wavelengths (i.e. optical and X-ray, [56]) may yield
more complete samples to higher redshifts and lower mass limits, with less
contamination.
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5.1 Counts in Cells

The earliest cluster catalogs, like those of Abell, utilized a simple technique of
counting galaxies in a fixed magnitude interval, in cells of a fixed physical or
angular size. Indeed, Abell simply used visual recognition of galaxy overdensi-
ties, whose properties were then measured ex post facto in fixed physical cells.
This technique was used by Couch et al. [11] and Lidman and Peterson [34]
to detect clusters at moderate redshifts (z ∼ 0.5), by requiring a specified
enhancement, above the mean background, of the galaxy surface density in a
given area. This enhancement, called the contrast, is defined as

σcl =
Ncluster −Nfield

σfield
(1)

where Ncluster is the number of galaxies in the cell corresponding to the clus-
ter, Nfield is the mean background counts and σfield is the variance of the
field counts for the same area. The magnitude range and cell size used are
parameters that must be set based on the photometric survey material and
the type or distance of clusters to be found. For instance, Lidman and Peter-
son [34] chose these parameters to maximize the contrast above background
for a cluster at z = 0.5. Using the distribution of cell counts, one can analyti-
cally determine the detection likelihood of a cluster with a given redshift and
richness (assuming a fixed luminosity function), given a detection threshold.
The false detection rate is harder, if not impossible, to quantify, without run-
ning the algorithm on a catalog with extensive spectroscopy. This is true for
most of the techniques that rely on photometry alone. It is also possible to
increase the contrast of clusters with the background by weighting galaxies
based on their luminosities and positions. Galaxies closer to the cluster center
are up-weighted, while the luminosity weighting depends on both the cluster
and field luminosity functions, as well as the cluster redshift. This scheme is
similar to that used by the matched filter algorithm, detailed later.

This technique, although straightforward, has numerous drawbacks. First,
it relies on initial visual detection of overdensities, which are then quantified
objectively. Since simple counts-in-cells methods use the galaxy distribution
projected along the entire line of sight, chance alignments of poorer systems
become more common, increasing the contamination. Optimizing the magni-
tude range and cell size for a given redshift reduces the efficiency of detecting
clusters at other redshifts, especially closer ones since their core radii are much
larger. Setting the magnitude range typically assumes that the cluster galaxy
luminosity function at the redshift of interest is the same as it is today, which
is not true. Furthermore, single band surveys observe different portions of
the rest frame spectrum of galaxies at different redshifts, altering the relative
sensitivity to clusters over the range probed. Finally, the selection function
can only be determined analytically for circular clusters with fixed luminosity
functions. Given these issues, this technique is inappropriate for modern, deep
surveys.
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5.2 Percolation Algorithms

A majority of current cluster surveys rely on a smoothed map of projected
galaxy density from which peaks are selected (see below). However, smoothing
invariable reduces the amount of information being used, leading some authors
to employ percolation (or friends-of-friends, FOF) algorithms. In their sim-
plest form, these techniques link pairs of galaxies that are separated by a
distance less than some threshold (typically related to the mean galaxy sep-
arations). Galaxies that have links in common are then assigned to the same
group; once a group contains more than a specified number of members, it
becomes a candidate cluster. This technique was used to construct a cluster
catalog from APM data [12]. However, it is not typically used on two dimen-
sional data, because the results of this method are very sensitive to the linking
length, and can easily combine multiple clusters into long, filamentary struc-
tures. On the other hand, FOF algorithms are very commonly used for struc-
ture finding in three-dimensional data, especially N-body simulations [13, 14]
and redshift surveys [28, 51]. A variant of this technique utilizing photometric
redshifts has been recently proposed [8].

5.3 Simple Smoothing Kernels

Another objective and automated approach to cluster detection is the use
of a smoothing kernel to generate a continuous density field from the dis-
crete positions of galaxies in a catalog. For instance, Shectman [54] used the
galaxy counts of Shane and Wirtanen in 10′ bins, smoothed with a very sim-
ple weighting kernel. A minimum number of galaxies within this smoothed
region (in this case, 20) were then required to detect a cluster. This type of
kernel is fixed in angular size and thus does not smooth clusters at different
redshifts with consistent physical radii, making its sensitivity highly redshift
dependent. Similarly, it uses the full projected galaxy distribution (much as
Abell did), and is thus insensitive to the different parts of the LF sampled at
different redshifts.

5.4 The Adaptive Kernel

A slightly more sophisticated technique is to use an adaptive smoothing kernel
[57]. This technique uses a two-stage process to produce a density map. First,
at each point t, it produces a pilot estimate f(t) of the galaxy density at each
point in the map. Based on this pilot estimate, it then applies a smoothing
kernel whose size changes as a function of the local density, with a smaller
kernel at higher density. This is achieved by defining a local bandwidth factor:

λi = [f(t)/g]−α, (2)

where g is the geometric mean of f(t) and α is a sensitivity parameter that sets
the variation of kernel size with density. NoSOCS uses a sensitivity parameter
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α = 0.5, which results in a minimally biased final density estimate, and is
simultaneously more sensitive to local density variations than a fixed-width
kernel [57]. This is then used to construct the adaptive kernel estimate:

f̂(t) = n−1
n∑

i=1

h−2λ−2
i K{h−2λ−2

i (t−Xi)} (3)

where h is the bandwidth, which is a parameter that must be set based on
the survey properties.

The adaptive kernel was used to generate the Northern Sky Optical Cluster
Survey [16, 17, 21]. The smoothing size (in their case, 500′′ radius) is set to
prevent over-smoothing the cores of higher redshift (z ∼ 0.3) clusters, while
avoiding fragmentation of most low redshift (z ∼ 0.08) clusters. Because the
input galaxy catalog is relatively shallow, and the redshift range probed is not
very large, it is possible to do this. For deeper surveys, this is not practical,
and therefore this technique cannot be used in its simplest form. Figure 3
demonstrates example density maps, showing the effect of varying the initial
smoothing window. In this figure, four simulated clusters are placed into a
simulated background, representing the expected range of detectability in the
NoSOCS survey. There are two clusters at low z (0.08), and two at high z
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Fig. 3. The effect of varying the initial smoothing window for the adaptive kernel on
cluster appearance. Each panel contains a simulated background with four simulated
clusters, as described in the text. The smoothing kernel ranges in size from 300′′ to
800′′ in 100′′ increments. Taken from [17]
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(0.24), with one poor and one rich cluster at each redshift (100 and 333 total
members, Ngals = 25 and 80 respectively).

After a smooth density map is generated, cluster detection can be per-
formed analogously to object detection in standard astronomical images. In
NoSOCS, Gal et al. used SExtractor [7] to detect density peaks. The tuning
of parameters in the detection step is fundamentally important in such sur-
veys, and can be accomplished using simulated clusters placed in the observed
density field, from which the completeness and false detection rates can be
determined. Even so, this method involves many adjustable parameters (the
smoothing kernel size, sensitivity parameter, and all the source detection pa-
rameters) such that it must be optimized with care for the data being used.
Given an end-to-end cluster detection methodology, one can use simulations
to determine the selection function’s dependence on redshift, richness, and
other cluster properties (see [17] for details). However, the measurement of
cluster richness and redshift are done in a step separate from detection, using
the input galaxy catalogs, further complicating this technique. The adaptive
kernel is very fast and simple to implement, making it suitable for all-sky
surveys, but is only truly useful in situations where the photometry is poor,
and the survey is not very deep, as is the case for NoSOCS.

5.5 Surface Brightness Enhancements

It is not necessary to have photometry for individual galaxies to detect clus-
ters. A novel but difficult approach is to detect the localized cumulative sur-
face brightness enhancement due to unresolved light from galaxies in distant
clusters. This method was pioneered by Zaritsky et al. [62, 63], who showed
that distant clusters could be detected using short integration times on small
1-m class telescopes. However, this method requires extremely accurate flat-
fielding, object subtraction, masking of bright stars. and excellent data ho-
mogeneity. Once all detected objects are removed from a frame, and nuisance
sources such as bright stars masked, the remaining data is smoothed with a
kernel comparable to the size of clusters at the desired redshift. The com-
pleteness and contamination rates of such a catalog are extremely difficult
to model. Thus, this technique is not necessarily appropriate for generating
statistical catalogs for cosmological tests, but is an excellent, cost-effective
means to find interesting objects for other studies.

5.6 The Matched Filter

With accurate photometry, and deeper surveys, one can use more sophisti-
cated tools for cluster detection. As we will discuss later, color information
is very powerful, but is not always available. However, even with single-band
data, it is possible to simultaneously use the locations and magnitudes of
galaxies. One such method is the matched filter [49], which models the spa-
tial and luminosity distribution of galaxies in a cluster, and tests how well
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galaxies in a given sky region match this model for various redshifts. As a
result, it outputs an estimate of the redshift and total luminosity of each de-
tected cluster as an integral part of the detection scheme. Following Postman
et al. we can describe, at any location, the distribution of galaxies per unit
area and magnitude D(r,m) as a sum of the background and possible cluster
contributions:

D(r,m) = b(m) + ΛclP (r/rc)φ(m−m∗) (4)

Here, D is the number of galaxies per magnitude per arcsec2 at magnitude
m and distance r from a putative cluster center. The background density is
b(m), and the cluster contribution is defined by a parameter Λcl proportional
to its total richness, its differential luminosity function φ(m−m∗), and its
projected radial profile P (r/rc). The parameter rc is the characteristic cluster
radius, and m∗ is the characteristic galaxy luminosity. One can then construct
a likelihood for the data given this model, which is a function of the param-
eters rc, m∗, and Λcl. Because two of these parameters, especially m∗, are
sensitive to the redshift, one obtains an estimated redshift when maximizing
the likelihood relative to this parameter. The algorithm outputs the richness
Λcl at each redshift tested, and thus provides an integrated estimator of the
total cluster richness. The luminosity function used by Postman et al. is a
Schechter [55] function with a power law cutoff applied to the faint end, while
they use a circularly symmetric radial profile with core and cutoff radii (see
their 19).

Like the adaptive kernel, this method produces density maps on which
source detection must still be run. These maps have a grid size set by the user,
typically of order half the core radius at each redshift used, with numerous
maps for each field, one for each redshift tested. The goal of the matched filter
is to improve the contrast of clusters above the background, by convolving
with an “optimal” filter, and also to output redshift and richness estimates.
Given a set of density maps, one can use a variety of detection algorithms
to select peaks. A given cluster is likely to be detected in multiple maps (at
different redshifts) of the same region; its redshift is estimated by finding
the filter redshift at which the peak signal is maximized. By using multiple
photometric bands, one can run this algorithm separately on each band and
improve the reliability of the catalogs. The richness of a cluster is measured
from the density map corresponding to the cluster redshift, and represents
approximately the equivalent number of L∗ galaxies in the cluster.

The matched filter is a very powerful cluster detection technique. It can
handle deep surveys spanning a large redshift range, and provides redshift and
richness measures as an innate part of the procedure. The selection function
can be estimated using simulated clusters, as was done in significant detail
by Postman et al. However, the technique relies on fixed analytic luminosity
functions and radial profiles for the likelihood estimates. Thus, clusters which
have properties inconsistent with these input functions will be detected at
lower likelihood, if at all. While this is not likely to be an issue at low to
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moderate redshifts, as the population of clusters becomes increasingly merger
dominated at z ∼ 0.8 [10], these simple representations will fail. Similarly, the
cluster and field LF both evolve with redshift, which can effect the estimated
redshift. Also, as the redshifts and k-corrections become large, one samples a
very different region of the LF than at low redshift. Nevertheless, this remains
one of the best cluster detection techniques for cluster detection in moderately
deep surveys.

5.7 Hybrid and Adaptive Matched Filter

The matched filter can be extended to include estimated (photometric) or
measured (spectroscopic) redshifts. This extension has been called the adap-
tive matched filter (AMF, [31]). The adaptive here refers to this method’s
ability to accept 2-dimensional (positions and magnitudes), 2.5-dimensional
(positions, magnitudes, and estimated redshifts), and 3-dimensional (posi-
tions, magnitudes, and redshifts) data, adapting to the redshift errors. In
implementation, this technique uses a two-stage method, first maximizing the
cluster likelihood on a coarse grid of locations and redshifts, and then refining
the redshift and richness on a finer grid. Unlike the standard matched filter,
the AMF evaluates the likelihood function at each galaxy position, and not
on a fixed grid for each redshift interval. Thus, for each galaxy, the output
includes a likelihood that there is a cluster centered on this galaxy, and the
estimated redshift.

The inclusion of photometric redshifts should substantially improve detec-
tion of poor clusters, which is very important since most galaxies live in poor
systems, and these are suspected to be sites for significant galaxy evolution.
However, [32], using SDSS data, found that the simple matched filter is more
efficient at detecting faint clusters, while the AMF estimated cluster proper-
ties more accurately. The matched filter performs better for detection because
the significance threshold for finding candidates is redshift dependent, deter-
mined separately for each map produced in different redshift intervals. The
AMF, on the other hand, finds peaks first in redshift space, and then selects
candidates using a universal threshold. Thus, they propose a hybrid system,
using the matched filter to detect candidate clusters, and the AMF to obtain
its properties.

5.8 Cut-and-Enhance

Despite the popularity of matched filter algorithms for cluster detection, their
assumption of a radial profile and luminosity function are cause for concern.
Thus, development of semi-parametric detection methods remains a vibrant
area of research. While the adaptive kernel described earlier is such a tech-
nique, more sophisticated algorithms are possible, especially with the inclusion
of color information. One such technique is the Cut-and-Enhance method [24],
which has been applied to SDSS data. This method relies on the presence of
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the red sequence in clusters, applying a variety of color and color-color cuts
to generate galaxy subsamples which should span different redshift ranges.
Within each cut, pairs of galaxies with separations less than 5′ are replaced
by Gaussian clouds, which are then summed to generate density maps. In
this technique, the presence of many close pairs (as in a high redshift cluster)
yields a more compact cloud, making it easier to detect, and thus possibly
biasing the catalog against low-z clusters (see Fig. 4). As with the AK tech-
nique, this method yields a density map on which object detection must be
performed; Goto et al. [24] utilize SExtractor. Once potential clusters are de-
tected in the maps made using the various color cuts, these catalogs must be
merged to produce a single list of candidates. Redshift and richness estimates
are performed a posteriori, as they are with the AK. Similar to the AK, there
are many tunable parameters which make this method difficult to optimize.

5.9 Voronoi Tessellation

Considering a distribution of particles it is possible to define a characteristic
volume associated with each particle. This is known as the Voronoi volume,
whose radius is of the order of the mean particle separation. The complete
division of a region into these volumes is known as Voronoi Tessellation (VT),
and it has been applied to a variety of astronomical problems, and in particular
to cluster detection ( [32, 50]). As pointed out by the latter, one of the main
advantages of employing VT to look for galaxy clusters is that this technique
does not distribute the data in bins, nor does it assume a particular source
geometry intrinsic to the detection process. The algorithm is thus sensitive to
irregular and elongated structures.

Fig. 4. An enhanced map of the galaxy distribution in the SDSS Early Data Release,
after applying the g∗–r∗–ii color-color cut. Detected clusters are circled. Taken from
[24]
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The parameter of interest in this case is the galaxy density. When applying
VT to a galaxy catalog, each galaxy is considered as a seed and has a Voronoi
cell associated to it. The area of this cell is interpreted as the effective area a
galaxy occupies in the plane. The inverse of this area gives the local density at
that point. Galaxy clusters are identified by high density regions, composed of
small adjacent cells, i.e., cells small enough to give a density value higher than
the chosen density threshold. An example of Voronoi Tessellation applied to
a galaxy catalog for one DPOSS field is presented in Fig. 5. For clarity, we
show only galaxies with 17.0 ≤ mr ≤ 18.5.

Once such a tessellation is created, candidate clusters are identified based
on two criteria. The first is the density threshold, which is used to iden-
tify fluctuations as significant overdensities over the background distribution,
and is termed the search confidence level. The second criterion rejects can-
didates from the preliminary list using statistics of Voronoi Tessellation for
a poissonian distribution of particles, by computing the probability that an
overdensity is a random fluctuation. This is called the rejection confidence
level. Kim et al. [32] used the color-magnitude relation for cluster ellipticals
to divide the galaxy catalog into separate redshift bins, and ran the VT code
on each bin. Candidates in each slice are identified by requiring a minimum
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Fig. 5. Voronoi Tessellation of galaxies with 17.0 ≤ mr ≤ 18.5 in a DPOSS field.
Each triangle represents a galaxy surrounded by its associated Voronoi cell (indicated
by the polyhedrals). Excised areas (due to bright objects) are shown as rectangles.
Taken from [36]
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number Nhdg of galaxies having overdensities δ greater than some threshold
δc, within a radius of 0.7 h−1 Mpc. The candidates originating in different
bins are then cross-correlated to filter out significant overlaps and produce
the final catalog. Ramella et al. [50] and Lopes et al. [36] follow a different
approach, as they do not have color information. Instead, they use the object
magnitudes to minimize background/foreground contamination and enhance
the cluster contrast, as follows:

1. The galaxy catalog is divided into different magnitude bins, starting at the
bright limit of the sample and shifting to progressively fainter bins. The
step size adopted is derived from the photometric errors of the catalog.

2. The VT code is run using the galaxy catalog for each bin, resulting in a
catalog of cluster candidates associated with each magnitude slice.

3. The centroid of a cluster candidate detected in different bins will change
due to the statistical noise of the foreground/background galaxy distri-
bution. Thus, the cluster catalogs from all bins are cross-matched, and
overdensities are merged according to a set criterion, producing a com-
bined catalog.

4. A minimum number (Nmin) of detections in different bins is required in
order to consider a given fluctuation as a cluster candidate. Nmin acts as
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a final threshold for the whole procedure. After this step, the final cluster
catalog is complete.

Kim et al. [32] and Lopes et al. [36] compare the performance of their VT
algorithms with the HMF and adaptive kernel, respectively. Figure 6 (taken
from [32]) shows the absolute recovery rates of clusters in four different ranges
of cluster parameters for the HMF (solid line) and the VT (dashed line).
Both algorithms agree very well for clusters with the highest signals (rich,
low redshift), but the VT does slightly better for the thresholds determined
from the uniform background case. Similarly, Lopes et al. [36] find that the
VT algorithm performs better for poor, nearby clusters, while the adaptive
kernel goes deeper when detecting rich systems, as seen in Fig. 7, where the
VT-only detections are preferentially poor and low redshift, and the AK-only
detections are richer and at high redshift.
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5.10 MaxBCG

The maxBCG algorithm, developed for use on SDSS data [3, 26], is another
technique that relies on the small color dispersion of early-type cluster galax-
ies. The brightest of the cluster galaxies (BCGs) have predictable colors and
magnitudes out to redshifts of order unity. Unlike many of the other techniques
discussed above, maxBCG does not generate density maps. Instead, it calcu-
lates a likelihood as a function of redshift for each galaxy that it is a BCG,
based on its colors and the presence of a red sequence from the surrounding
objects (see also Fig. 8). This is calculated as

Lmax = maxL(z);L(z) = LBCG + logNgal (5)

where LBCG is the likelihood, at redshift z, that a galaxy is a BCG, based
on its colors and luminosity, and Ngal is the number of galaxies within 1 h−1

Mpc with colors and magnitudes consistent with the red sequence (i.e. within
0.1 mag of the mean BCG color at the redshift being tested). This procedure
results in a maximum likelihood and redshift for each galaxy in the catalog.
The peaks in the Lmax distribution are then selected as the candidate clusters.

This algorithm appears to be extremely powerful for selecting clusters in
the SDSS. Simulations suggest that maxBCG recovers and correctly estimates
the richness for greater than 90% of clusters and groups present with Ngal ≥ 15
out to z = 0.3, with an estimated redshift dispersion of δz = 0.02. As long as
one can obtain a sufficiently deep photometric catalog, with the appropriate
colors to map the red sequence, this technique can be used to very efficiently
detect clusters. Like all methods that rely on the presence of a red sequence,
it will eventually fail at sufficiently high redshifts, where the cluster galaxy
population becomes more heterogeneous. However, clusters detected out to
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Fig. 8. SDSS color-magnitude diagram of observed g−r vs. apparent i band for
galaxies near a rich cluster at z = 0.15. Ellipses represent 1, 2, and 3 σ contours
around the mean BCG color and magnitude at that redshift. The dotted line indi-
cates the track of BCG color and magnitude as a function of redshift. The horizontal
lines and vertical dashed line show the region of inclusion for Ngal determination.
Taken from [26]
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z ∼1–1.5, even using non-optical techniques, still show a red sequence, albeit
with larger scatter, which will reduce the efficiency of this method. Addi-
tionally, the definition of Ngals as the number of red sequence galaxies may
introduce a bias, as poorer, less concentrated, or more distant clusters have
less well defined color-magnitude relations, and the luminosity functions for
clusters vary with richness as well (Fig. 10 of [26]).

5.11 The Cluster Red Sequence Method

As we have discussed already, the existence of a tight color-magnitude relation
for cluster galaxies provides a mechanism for reducing fore- and background
contamination, enhancing cluster contrast, and estimating redshifts in cluster
surveys. Because the red sequence is such a strong indicator of a cluster’s
presence, and is especially tight for the brighter cluster members, it can be
used to detect clusters to high redshifts (z ∼ 1) with comparatively shallow
imaging, if an optimal set of photometric bands is chosen. This is the idea
behind the Cluster Red Sequence (CRS; [22]) method, utilized by the Red
Sequence Cluster Survey (RCS; [23]). Figure 9a shows model color-magnitude
tracks for different galaxy types for 0.1 ≤ z ≤ 1.0. The cluster ellipticals are
the reddest objects at all redshifts. Even more importantly, if the filters used
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straddle the 4000 Åbreak at a given redshift, the cluster ellipticals at that red-
shift are redder than all galaxies at all lower redshifts. The only contaminants
are more distant, bluer galaxies, eliminating most of the foreground contam-
ination found in imaging surveys. The change of the red sequence color with
redshift at a fixed apparent magnitude also makes it a very useful redshift
estimator [37].

Gladders and Yee generate a set of overlapping color slices based on models
of the red sequence. A subset of galaxies is selected that belong to each slice,
based on their magnitudes, colors, color errors, and the models. A weight
for each chosen galaxy is computed, based on the galaxy magnitude and the
likelihood that the galaxy belongs to the color slice in question (Fig. 9b). A
surface density map is then constructed for each slice using a fixed smoothing
kernel, with a scale radius of 0.33 h−1 Mpc. All the slices taken together form
a volume density in position and redshift. Peaks are then selected from this
volume. Gladders et al. [23] present the results of this technique applied to
the first two RCS patches.

In a similar vein, the High Redshift Large Scale Structure Survey [19, 20,
38], uses deep multicolor photometry around known clusters at z > 0.7 to
search for additional large scale structure. They apply color and color–color
cuts to select galaxies with the colors of spectroscopically confirmed members
in the original clusters. The selected galaxies are used to make adaptive kernel
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Fig. 11. Density maps of galaxies meeting the z ∼ 0.9 red galaxy criteria in the
Cl1604 field

density maps from which peaks are selected. This technique was applied to
the Cl1604 supercluster at z ∼ 0.9. Starting with two known clusters with ap-
proximately 20 spectroscopic members, there are now a dozen structures with
360 confirmed members known in this supercluster. These galaxies typically
follow the red sequence, but as can be seen in Fig. 10, the scatter is very large,
and many cluster or supercluster members are actually bluer than the red se-
quence at this redshift. Figure 10 shows the r−i vs. i color-magnitude and
r−i vs. i−z color–color diagrams for objects in a ∼30′ square region around
the Cl1604 supercluster, with all known cluster members shown in red. and
the color selection boxes marked. Figure 11 shows the density map for this
region, with two different significance thresholds, and the clusters comprising
the supercluster marked. Clearly, in regions such as this, traditional cluster
detection techniques will yield incorrect results, combining multiple clusters,
and measuring incorrect redshifts and richnesses. Figure 12 shows a 3-d map of

Fig. 12. Three dimensional spatial distribution of the spectroscopically confirmed
Cl1604 supercluster members. Dots are scaled by galaxy luminosity
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the spectroscopically confirmed supercluster members, revealing the complex
nature of this structure. Dots are scaled with galaxy luminosity. While only
∼ 10 Mpc across on the sky, the apparent depth of this structure is nearly
10 times greater, making it comparable to the largest local superclusters.

6 Conclusions

It is clear that there exist many methods for detecting clusters in optical
imaging surveys. Some of these are designed to work on very simple, single-
band data (AK, Matched Filter, VT), but will work on multicolor data as
well. Others, such as maxBCG and the CRS method, rely on galaxy colors
and the red sequence to potentially improve cluster detection and reduce
contamination by projections and spurious objects. Very little work has been
done to compare these techniques, with some exceptions ( [5, 32, 36], each of
whom compared the results of only two or three algorithms. Even from these
tests it is clear that no single technique is perfect, although some (notably
those that use colors) are clearly more robust. Certainly any program to find
clusters in imaging data must consider the input photometry when deciding
which, if any, of these methods to use.

One of the most vexing issues facing cluster surveys is our inability to
compare directly to large scale cosmological simulations. Most such simu-
lations are N-body only, but have perfect knowledge of object masses and
positions. Thus, it is possible to construct algorithms to detect overdensi-
ties based purely on mass, but it is not possible to obtain the photometric
properties of these objects! Recent work, such as the Millennium Simula-
tion [58], is approaching this goal. It is necessary to extract from these simu-
lations the magnitudes of galaxies in filters used for actual surveys, and run
the various cluster detection algorithms on these simulated galaxy catalogs.
The results can then be compared to that of pure mass selection, and the
redshift-, structure- and mass-dependent biases understood. Ideally, this
should be done for many large simulations using different cosmologies, since
the galaxy evolution and selection effects will vary. Such work is fundamen-
tal if we are to use the evolution of the mass function of galaxy clusters for
cosmology. As deeper and larger optical surveys, such as LSST, and other
techniques such as X-ray and Sunyaev–Z’eldovich effect observations become
available, the need for these simulations becomes ever greater.
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1 Introduction

Studies at radio wavelengths allow the investigation of important components
of clusters of galaxies. The most spectacular aspect of cluster radio emission is
represented by the large-scale diffuse radio sources, which cannot be obviously
associated with any individual galaxy. These sources indicate the existence
of relativistic particles and magnetic fields in the cluster volume, thus the
presence of non-thermal processes in the hot intracluster medium (ICM). The
knowledge of the properties of these sources has increased significantly in
recent years, due to higher sensitivity radio images and to the development of
theoretical models. The importance of these sources is that they are large scale
features, which are related to other cluster properties in the optical and X-ray
domain, and are thus directly connected to the cluster history and evolution.

The radio emission in clusters can also originate from individual galaxies,
which have been imaged over the last decades with sensitive radio telescopes.
The emission from radio galaxies often extends well beyond their optical
boundaries, out to hundreds of kiloparsec, and hence it is expected that the
ICM would affect their structure. This interaction is indeed observed in ex-
treme examples: the existence of radio galaxies showing distorted structures
(tailed radio sources), and radio sources filling X-ray cavities at the centre of
cooling core clusters. Finally, the cluster environment may play a role in the
statistical radio properties of galaxies, i.e. their probability of forming radio
sources.

The organization of this paper is as follows: The basic formulae used to
derive the age of synchrotron sources and the equipartition parameters are
presented in Sect. 2, while the observational properties of diffuse radio sources
are presented in Sect. 3. Then in Sect. 4 we give a general outline of the models
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of the relativistic particle origin and re-acceleration; while the current results
on cluster magnetic fields are described in Sect. 5. Finally, Sect. 6 reports the
properties of cluster radio emitting galaxies.

The intrinsic parameters quoted in this paper are computed for a ΛCDM
cosmology with H0 = 70 km s−1Mpc−1, Ωm=0.3 and ΩΛ=0.7.

2 Basic Formulas from the Synchrotron Theory

2.1 Synchrotron Radiation

The synchrotron emission is produced by the spiralling motion of relativistic
electrons in a magnetic field. An electron with energy E = γmec

2 (where γ is
the Lorentz factor) in a magnetic field B, experiences a v×B force that causes
it to follow a helical path along the field lines, emitting radiation into a cone
of half-angle � γ−1 about its instantaneous velocity. To the observer, the ra-
diation is essentially a continuum with a fairly peaked spectrum concentrated
near the frequency

νsyn =
3e

4πm3
ec

5
(B sin θ)e2 , (1)

where θ is the pitch angle between the electron velocity and the magnetic field
direction. The synchrotron power emitted by a relativistic electron is

−dE
dt

=
2e4

3m4
ec

7
(B sin θ)2E2 . (2)

In c.g.s units:
νsyn � 6.27 × 1018(B sin θ)E2 (3)

� 4.2 × 106(B sin θ)γ2,

−dE
dt

� 2.37 × 10−3(B sin θ)2E2 (4)

� 1.6 × 10−15(B sin θ)2γ2.

From (3), it is easily derived that electrons of γ � 103−104 in magnetic fields
of B � 1μ G radiate in the radio domain.

The case of astrophysical interest is that of a homogeneous and isotropic
population of electrons with a power-law energy distribution, i.e., with the
particle density between E and E+dE given by:

N(E)dE = N0E
−δdE . (5)

To obtain the total monochromatic emissivity J(ν), one must integrate over
the contributions of all electrons. In regions which are optically thin to their
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own radiation (i.e. without any internal absorption), the total intensity spec-
trum varies as [14]:

J(ν) ∝ N0(B sin θ)1+αν−α , (6)

therefore it follows a power-law with spectral index related to the index of the
electron energy distribution α = (δ − 1)/2.

2.2 Time Evolution of the Synchrotron Spectrum

By integrating the expression of the electron energy loss (2) it is found that
the particle energy decreases with time, as:

E =
E0

1 + b(B sin θ)2E0t
, (7)

where E0 is the initial energy at t = 0, and b = 2e4/(3m4
ec

7) = 2.37 ×
10−3 c.g.s units (see 4). Therefore, the particle energy halves after a time t∗

= [b(B sin θ)2E0]−1. This is a characteristic time which can be identified as
the particle lifetime. Similarly, we can define a characteristic energy E∗ =
[b(B sin θ)2t]−1, such that a particle with energy E0 > E∗ will lose most of its
energy in a time t∗.

In an ensemble of particles, the energy losses of each particle affect the over-
all particle energy distribution, and consequently the resulting synchrotron
spectrum undergoes a modification. Indeed, after a time t∗ the particles with
E > E∗ will lose most of their energy. This produces a critical frequency
ν∗ in the radio spectrum, such that for ν < ν∗ the spectrum is unchanged,
whereas for ν > ν∗ the spectrum steepens. If particles were produced in a
single event with power law energy distribution, N(E, 0)dE = N0E

−δdE, the
radio spectrum would fall rapidly to zero for ν > ν∗. In the case that new
particles were injected in the source, the spectrum beyond ν∗ steepens by 0.5.
These various cases are illustrated in Fig. 1. Any radio spectrum showing a
cutoff is evidence of ageing of the radio emitting particles. In addition, any
spectrum showing no cutoff but having a steep spectral index is also indicative

L
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L
og

 J

L
og

 J

Log ν

ν−α ν−α ν−α

ν∗Log ν Log ν ν∗

ν−α−0.5

Fig. 1. Sketch of synchrotron spectra. The left panel shows a standard spectrum,
the central panel shows an aged spectrum produced in a source with a single event of
particle production, the right panel shows an aged spectrum with particle injection.
The critical frequency ν∗ is related to the particle lifetime
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of ageing, since it naturally refers to a range of frequencies higher than the
critical frequency. For a rigorous treatment of the evolution of synchrotron
spectra we refer to [75] and [117].

From the critical frequency ν∗, it is possible to derive the radiating elec-
tron lifetime, which represents the time since the particle production (or the
time since the last injection event, depending on the shape of spectral steep-
ening). Since the synchrotron emission depends on sin θ (1), one has to take
into account the distribution of electron pitch angles. Moreover, for a cor-
rect evaluation, also the electron energy losses, due to the inverse Compton
process, must be considered.

The electron lifetime (in Myr), assuming an anisotropic pitch angle distri-
bution is given by:

t∗ = 1060
B0.5

B2 + 2
3B

2
CMB

[(1 + z)ν∗]−0.5
, (8)

where the magnetic field B is in μG, the frequency ν is in GHz and
BCMB(= 3.25 (1 + z)2 μG) is the equivalent magnetic field of the Cosmic Mi-
crowave Background. If the distribution of electron pitch angles is isotropic,
the above formula becomes:

t∗ = 1590
B0.5

B2 + B2
CMB

[(1 + z)ν∗]−0.5
. (9)

A derivation of the expressions in (8) and (9) can be found in [111].

2.3 Energy Content and Equipartition Magnetic Fields

The total energy of a synchrotron source is due to the energy in relativistic
particles (Uel in electrons and Upr in protons) plus the energy in magnetic
fields (UB):

Utot = Uel + Upr + UB . (10)

The magnetic field energy contained in the source volume V is given by

UB =
B2

8π
ΦV , (11)

where Φ is the fraction of the source volume occupied by the magnetic field
(filling factor). The electron total energy in the range E1–E2,

Uel = V ×
∫ E2

E1

N(E)E dE = V N0

∫ E2

E1

E−δ+1 dE , (12)

can be expressed as a function of the synchrotron luminosity, Lsyn, observed
between two frequencies ν1 and ν2, i.e.,

Uel = Lsyn(B sin θ)−
3
2 f(δ, ν1, ν2) , (13)
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where f(δ, ν1, ν2) is a function of the index of the electron energy distribution
and of the observing frequencies (see [96] for a rigorous derivation). The energy
contained in the heavy particles, Upr, can be related to Uel assuming:

Upr = kUel . (14)

Finally, taking sin θ=1, the total energy is:

Utot = (1 + k)LsynB
− 3

2 f(δ, ν1, ν2) +
B2

8π
ΦV . (15)

The trend of the radio source energy content is shown in Fig. 2. The condition
of minimum energy, Umin, computed by equating to zero the first derivative of
the expression of Utot (15), is obtained when the contributions of the magnetic
field and the relativistic particles are approximately equal:

UB =
3
4
(1 + k)Uel . (16)

For this reason the minimum energy is known also as equipartition value.
The total minimum energy density umin = Umin/V Φ, assuming same vol-

ume in particles and magnetic field (Φ=1), and applying the K-correction,
can be expressed in terms of observable parameters, as:

umin = 1.23 × 10−12(1 + k)
4
7 (ν0)

4α
7 (1 + z)

(12+4α)
7 I

4
7
0 d

4
7 , (17)

where I0 is the source brightness which is directly observed at the frequency
ν0, d is the source depth along the line of sight, z is the source redshift and α

U

B
Beq

Upart

Utot

UB

Fig. 2. Trend of the energy content in a radio source (in arbitrary units): the en-
ergy in magnetic fields is UB ∝ B2, the energy in relativistic particles is Upart =
Uel+Upr ∝ B−3/2. The total energy content Utot is minimum when the contributions
of magnetic fields and relativistic particles are approximately equal (equipartition
condition). The corresponding magnetic field is commonly referred to as equiparti-
tion value Beq
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is the spectral index of the radio emission. The energy density is in erg cm−3,
ν0 in MHz, I0 in mJy arcsec−2 and d in kpc. I0 can be measured from the
contour levels of a radio image (for significantly extended sources) or can be
obtained by dividing the source total flux by the source solid angle, while d
can be inferred from geometrical arguments. The constant has been computed
for α = 0.7, ν1 = 10 MHz and ν2 = 100 GHz (tabulated in [69], for other
values of these parameters).

The magnetic field for which the total energy content is minimum is re-
ferred to as the equipartition value and is derived as follows:

Beq =
(

24π
7

umin

) 1
2

. (18)

One must be aware of the uncertainties inherent to the determination of the
minimum energy density and equipartition magnetic field strength. The value
of k, the ratio of the energy in relativistic protons to that in electrons (14),
depends on the mechanism of generation of relativistic electrons, which, so far,
is poorly known. Values usually assumed in literature for clusters are k = 1
(or k = 0). Uncertainties are also related to the volume filling factor Φ.

In the standard approach presented above, the equipartition parameters
are obtained from the synchrotron radio luminosity observed between the
two fixed frequencies ν1 and ν2. Brunetti et al. [18] demonstrated that it is
more appropriate to calculate the radio source energy by integrating the syn-
chrotron luminosity over a range of electron energies. This avoids the problem

α = 1.15

α = 0.65

Beq(classic) Gauss

B
′ eq

/B
eq

10–610–7

1

2

3

4

5

Fig. 3. Values of the ratio B′
eq/Beq (see text) as a function of the equipartition

magnetic field obtained with the classical approach, assuming an electron minimum
Lorentz factor γmin = 50. Different lines refer to different values of the initial spectral
index (i.e. not affected by ageing), from α = 1.15 (top line) to α = 0.65 (bottom
line) in steps of α = 0.1



Clusters of Galaxies in the Radio 149

that electron energies corresponding to frequencies ν1 and ν2 depend on the
magnetic field value (see 1), thus the integration over a range of fixed frequen-
cies is equivalent to considering radiating electrons over a variable range of
energies. Moreover, it has the advantage that electrons of very low energy are
also taken into account. The equipartition quantities obtained by following
this approach are presented by [18] and [6]. Representing the electron energy
by its Lorentz factor γ, and assuming that γmin � γmax, the new expression
for the equipartition magnetic field B′

eq in Gauss (for α > 0.5) is:

B′
eq ∼ 1.1 γ

1−2α
3+α

min B
7

2(3+α)
eq , (19)

where Beq is the value of the equipartition magnetic field obtained with the
standard formulae by integrating the radio spectrum between 10 MHz and
100 GHz. It should be noticed that B′

eq is larger than Beq for Beq < γ−2
min (see

Fig. 3).

3 Radio Emission from the ICM: Diffuse Radio Sources

In recent years, there has been growing evidence for the existence of cluster
large-scale diffuse radio sources, which have no optical counterpart and no
obvious connection to cluster galaxies, and are therefore associated with the
ICM. These sources are typically grouped in 3 classes: halos, relics and mini-
halos. The number of clusters with halos and relics is presently around 50,
and whose properties have been recently reviewed by Giovannini & Feretti [60]
and Feretti [48]. The synchrotron nature of this radio emission indicates the
presence of cluster-wide magnetic fields of the order of ∼ 0.1–1 μG, and of a
population of relativistic electrons with Lorentz factor γ � 1000. The under-
standing of these non-thermal components is important for a comprehensive
physical description of the ICM.

3.1 Radio Halos

Radio halos are diffuse radio sources of low surface brightness (∼ μJy arcsec−2

at 20 cm) permeating the central volume of a cluster. They are typically
extended with sizes >∼ 1 Mpc and are unpolarized down to a few percent level.
The prototype of this class is the diffuse source Coma C at the centre of the
Coma cluster ( [57] and Fig. 4), first classified by Willson [122]. The halo in
A2163, shown in left panel of Fig. 5, is one of the most extended and powerful
halos. Other well studied giant radio halos are present in A665 [59], A2219 [2],
A2255 [42], A2319 [43], A2744 (Fig. 7, left panel), 1E0657-56 [84], and in the
distant cluster CL 0016+16 [59] at redshift z = 0.555. All these clusters show
recent merging processes, and no cooling core.

Radio halos of small size, i.e. � 1 Mpc, have also been revealed in the cen-
tral regions of clusters. Some examples are in A401 [59], A1300 [99], A2218
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(Fig. 5, right panel) and A3562 [55]. All these clusters, as well as those
hosting giant radio halos, are characterized by recent merger processes and no
cooling core.

Unlike the presence of thermal X-ray emission, the presence of diffuse
radio emission is not common in clusters of galaxies: the detection rate of
radio halos, at the detection limit of the NRAO VLA Sky Survey (NVSS)
is ∼ 5% in a complete cluster sample [58]. However, the probability is much
larger, if clusters with high X-ray luminosity are considered. Indeed, ∼ 35% of
clusters with X-ray luminosity larger than 1045 erg s−1 X-ray (in the ROSAT
band 0.1–2.4 keV, computed assuming H0 = 50 km s−1Mpc−1 and q0 = 0.5)
show a giant radio halo [60].

The physical parameters in radio halos can be estimated assuming equipar-
tition conditions, and further assuming equal energy in relativistic protons and
electrons, a volume filling factor of 1, a low frequency cut-off of 10 MHz, and
a high frequency cut-off of 10 GHz. The derived minimum energy densities
in halos and relics are of the order of 10−14–10−13 erg cm−3, i.e. much lower
than the energy density in the thermal gas. The corresponding equipartition
magnetic field strengths range from 0.1 to 1 μG.

The total radio spectra of halos are steep (α >∼ 1),1 as typically found in
aged radio sources. Only a few halos have good multi-frequency observations
that allow an accurate determination of their integrated spectrum. Among
them, the spectrum of the Coma cluster halo is characterized by a steep-
ening at high frequencies, which has been recently confirmed by single dish
data (Fig. 4, right panel). The spectrum of the radio halo in A1914 is very
steep, with an overall slope of α ∼ 1.8. A possible high frequency curvature
is discussed by Komissarov & Gubanov [79]. In A754, Bacchi et al. [2] esti-
mate α0.3GHz

0.07GHz ∼ 1.1, and α1.4 GHz
0.3GHz ∼ 1.5, and infer the presence of a possible

spectral cutoff. Indication of a high frequency spectral steepening is also ob-
tained in the halo of A2319, where Feretti et al. [43] report α0.6 GHz

0.4 GHz ∼ 0.9
and α1.4GHz

0.6GHz ∼ 2.2. In the few clusters where maps of the spectral index are
available (Coma C, [57]; A665 and A2163, [49], the radio spectrum steepens
radially with the distance from the cluster centre. In addition, it is found that
the spectrum in A665 and A2163 is flatter in the regions influenced by merger
processes (see Sect. 4.1).

In general, from the spectra of halos, it is derived that the radiative lifetime
of the relativistic electrons, considering synchrotron and inverse Compton en-
ergy losses, is of the order of ∼ 108 yr [107]. Since the expected diffusion
velocity of the electron population is of the order of the Alfvén speed (∼ 100
km s−1), the radiative electron lifetime is too short to allow the particle diffu-
sion throughout the cluster volume. Thus, the radiating electrons cannot have
been produced at some localized point of the cluster, but they must undergo
in situ energization, acting with an efficiency comparable to the energy loss

1 S(ν) ∝ ν−α as in (6).
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processes [97]. We will show in Sect. 4 that recent cluster mergers are likely
to supply energy to the halos and relics.

The radio and X-ray properties of halo clusters are related. The most pow-
erful radio halos are detected in the clusters with the highest X-ray luminosity.
This follows from the correlation shown in Fig. 6 between the monochromatic
radio power of a halo at 20 cm and the bolometric X-ray luminosity of the
parent cluster [60, 84]. The right panel of Fig. 6 shows the correlation be-
tween the average surface brightness of the radio halo and the cluster X-ray
luminosity. Since the brightness is an observable, this correlation can be used
to set upper limits to the radio emission to those clusters in which a radio
halo is not detected. It is worth reminding the reader that the radio power
versus X-ray luminosity correlation is valid for merging clusters with radio
halos, and therefore cannot be generalized to all clusters. Among the clusters
with high X-ray luminosity and no radio halo, there are A478, A576, A2204,
A1795, A2029, all well known relaxed clusters with a massive cooling flow.
An extrapolation of the above correlation to low radio and X-ray luminosities
indicates that clusters with LX <∼ 1045 erg s−1 would host halos of power of
a few 1023 W Hz−1. With a typical size of 1 Mpc, they would have a radio
surface brightness (easily derived from the right panel of Fig. 6) lower than
current limits obtained in the literature and in the NVSS. On the other hand,
it is possible that giant halos are only present in the most X-ray luminous
clusters, i.e. above a threshold of X-ray luminosity (see [2]). Future radio data
with next generation instruments (LOFAR, LWA, SKA) will allow the detec-
tion of low brightness/low power large halos, in order to clarify if halos are
present in all merging clusters or only in the most massive ones.
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Fig. 6. Left panel: Monochromatic radio power at 20 cm versus cluster bolometric
X-ray luminosity. Right panel: Average surface brightness of the radio halos versus
cluster X-ray luminosity. In both panels, filled and open circles refer to halos of size
> and < 1 Mpc, respectively
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Since cluster X-ray luminosity and mass are correlated [100], the corre-
lation between radio power (P1.4 GHz) and X-ray luminosity could reflect a
dependence of the radio power on the cluster mass. A correlation of the type
P1.4 GHz ∝ M2.3 has been derived [48, 66], where M is the total gravitational
mass within a radius of 3h−1

50 Mpc. Using the cluster mass within the virial
radius, the correlation is steeper (Cassano et al. in preparation). A correlation
of radio power vs cluster mass could indicate that the cluster mass may be a
crucial parameter in the formation of radio halos, as also suggested by [23].
Since it is likely that massive clusters are the result of several major mergers,
it is concluded that both past mergers and current mergers are the neces-
sary ingredients for the formation and evolution of radio halos. This scenario
may provide a further explanation of the fact that not all clusters showing
recent mergers host radio halos, which is expected from the recent modeling
of Cassano & Brunetti [24].

3.2 Radio Relics

Relic sources are diffuse extended sources, similar to the radio halos in their
low surface brightness, large size (>∼ 1 Mpc) and steep spectrum (α >∼ 1), but
they are generally detected in the cluster peripheral regions. They typically
show an elongated radio structure with the major axis roughly perpendic-
ular to the direction of the cluster radius, and they are strongly polarized
(∼ 20–30%). The most extended and powerful sources of this class are de-
tected in clusters with central radio halos: in the Coma cluster (the proto-
type relic source 1253+275, [56], A2163 [45], A2255 [42], A2256 [103] and
A2744 (Fig. 7, left panel). A spectacular example of two giant almost sym-
metric relics in the same cluster is found in A3667 (Fig. 7, right panel). There
are presently only a few cases of double opposite relics in clusters.

Other morphologies have been found to be associated with relics (see [61]
for a review). In the cluster A1664 (Fig. 8, left panel), the structure is ap-
proximately circular and regular. In A115 (Fig. 8, right panel), the elongated
relic extends from the cluster center to the periphery. This could be due to
projection effects, however this is the only relic showing such behaviour.

There are diffuse radio sources which are naturally classified as relics,
because of their non-central cluster location, but their characteristics are quite
different from those of giant relics. Examples of these sources are in A13,
A85 (Fig. 9), A133, A4038 [111]: they show a much smaller size than relics
(<∼ 300 kpc down to ∼ 50 kpc), are generally closer to the cluster center,
and show extremely steep radio spectra (α >∼ 2). They are strongly polarized
(>∼ 30%), and often quite filamentary when observed with sufficient resolution.
The relic in A133 was suggested to be related to past activity of a nearby
galaxy [50].

The detection rate of radio relics in a complete sample of clusters is ∼ 6% at
the detection limit of the NVSS [60]. Relics are found in clusters both with and
without a cooling core, suggesting that they may be related to minor or off-axis
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mergers, as well as to major mergers. Theoretical models propose that they are
tracers of shock waves in merger events (see Sect. 4.3). This is consistent with
their elongated structure, almost perpendicular to the merger axis. The radio
power of relics correlates with the cluster X-ray luminosity [46, 61], as also
found for halos (see Sect. 3.1 and Fig. 6), although with a larger dispersion.

–24 08

RELIC

RELIC

0.5 Mpc
0.5 Mpc

13 04 15

10

12

14

16

18

D
E

C
L

IN
A

T
IO

N
 (

J2
00

0)

20

22

24

26

00 30 15 00 40.0 20.0

Right Ascension (J2000)

0:58:00.0

18:00.0

28:20:00.0

22:00.0

D
ec

lin
at

io
n 

(J
20

00
)

24:00.0

26:00.0

28:00.0

30:00.0

55:40.003 45
RIGHT ACENSION (J2000)

Fig. 8. Radio emission at 20 cm (contours) of the clusters: Left panel: A1664
(z = 0.128), Right panel: A115 (z = 0.197), superimposed onto the grey-scale
cluster X-ray emission detected from ROSAT PSPC [66]



Clusters of Galaxies in the Radio 155

A85       IPOL   330.250 MHZ

D
E

C
L

IN
A

T
IO

N
 (

J2
00

0)

RIGHT ASCENSION (J2000)

00 42 0041 55 50 45 40 35 30 25 20

-09 16

18

20

22

24

26

28

RELIC

0.1 Mpc

20’ 00”

 30”

F

L

J

K
I

D

H G

B A

F

21’ 00”

30”

22’ 00”

30”

23’ 00”

30”

–09°24’00”

0h41m36s 33s 30s

RA (J2000)

27s 24s 21s

D
E

C
 (

J2
00

0)

Fig. 9. Radio emission at 90 cm (contours) in A85 (z = 0.056), superimposed
onto the optical image [59]. The zoom to the right shows the filamentary structure
detected at high resolution by Slee et al. [111] at 20 cm

The existence of this correlation indicates a link between the thermal and
relativistic plasma also in peripheral cluster regions.

3.3 Mini-Halos

Mini-halos are small size (∼ 500 kpc) diffuse radio sources at the center of
cooling core clusters, usually surrounding a powerful radio galaxy, as in the
Perseus cluster (Fig. 10, left panel), Virgo cluster [95], PKS 0745-191 [4],
A2626 [63]. Since there is an anticorrelation between the presence of a cool-
ing core and that of a major merger event, mini-halos are the only diffuse
sources which are not associated with cluster mergers. A peculiar example
is represented by the cluster A2142, which contains a cooling core but also
shows a cold front and thus merging activity [87]. The mini-halo in this clus-
ter is about 200 kpc in size and does not surround any powerful radio galaxy
(Fig. 10, right panel). For the latter reason, it could be also considered as a
small halo.

The radio spectra of mini-halos are steep, as those of halos and relics. In
the Perseus mini-halo, the integrated spectrum steepens at high frequency
and the spectral index distribution shows a radial steepening [110].

Gitti et al. [62] argued that the radio emitting particles in mini-halos can-
not be connected to the central radio galaxy in terms of particle diffusion or
buoyancy, but they are likely associated with the ICM in the cooling flow re-
gion (see Sect. 4.4). This is supported by the correlation observed between the
mini-halo radio power and the cooling flow power [63]; however, the number
of objects is still low and the parameters are affected by large errors.
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4 Radio Emitting Particles

From the diffuse radio emission described in the previous sections, it is de-
termined that highly energetic relativistic electrons (γ ∼ 104) are present in
clusters, either in the central or in the peripheral regions. They are found both
in merging (halos and relics) and relaxed (mini-halos) clusters, thus under dif-
ferent cluster conditions. These radio features are currently not known to be
present in all clusters. They show steep radio spectra, thus the radiating par-
ticles have short lifetimes (∼ 108 yr). Given the large size of the radio emitting
regions, the relativistic particles need to be reaccelerated by some mechanism,
acting with an efficiency comparable to the energy loss processes. Several pos-
sibilities have been suggested for the origin of relativistic electrons and for the
mechanisms transferring energy into the relativistic electron population.

4.1 Connection Between Halos/Relics
and Cluster Merger Processes

Evidence favour the hypothesis that clusters with halos and relics are char-
acterized by strong dynamical activity, related to merging processes. These
clusters indeed show: (i) substructures and distortions in the X-ray bright-
ness distribution [109]; (ii) temperature gradients [86] and gas shocks [90];
(iii) absence of a strong cooling flow [109]; (iv) values of the spectroscopic β
parameter which are on average larger than 1 [46]; (v) core radii significantly
larger than those of clusters classified as single/primary [46]; (vi) larger dis-
tance from the nearest neighbours, compared to clusters with similar X-ray
luminosity [108]. The fact that they appear more isolated supports the idea
that recent merger events lead to a depletion of the nearest neighbours.

Buote [23] derived a correlation between the radio power of halos and
relics and the dipole power ratio of the cluster two-dimensional gravitational
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potential. Since power ratios are closely related to the dynamical state of
a cluster, this correlation represents the first attempt to quantify the link
between diffuse sources and cluster mergers.

Maps of the radio spectral index between 0.3 and 1.4 GHz of the halos
in the two clusters A665 and A2163 show that the regions influenced by the
merger, as deduced from X-ray maps, show flatter spectra [49]. This is the
first direct confirmation that the cluster merger supplies energy to the radio
halo. Finally, we point out that we are not presently aware of any radio halo
or relic in a cluster where the presence of a merger has been clearly excluded.

4.2 Relativistic Electrons in Radio Halos

Origin

The relativistic electrons present in the cluster volume, which are responsible
for the diffuse radio emission, can be either primary or secondary electrons.
Primary electrons were injected into the cluster volume by AGN activity
(quasars, radio galaxies, etc.), or by star formation in normal galaxies (super-
novae, galactic winds, etc.) during the cluster dynamical history. This popula-
tion of electrons suffers strong radiation losses mainly because of synchrotron
and inverse Compton emission, thus reacceleration is needed to maintain their
energy to the level necessary to produce radio emission. For this reason, pri-
mary electron models can also be referred to as reacceleration models. These
models predict that the accelerated electrons have a maximum energy at
γ < 105 which produces a high frequency cut-off in the resulting synchrotron
spectrum [20]. Thus a high frequency steepening of the integrated spectrum is
expected, as well as a radial steepening and/or a complex spatial distribution
of the spectral index between two frequencies, the latter due to different reac-
celeration processes in different cluster regions. Moreover, in these models, a
tight connection between radio halos and cluster mergers is expected.

Secondary electrons are produced from inelastic nuclear collisions be-
tween the relativistic protons and the thermal ions of the ambient intraclus-
ter medium. The protons diffuse on large scales because their energy losses
are negligible. They can continuously produce in situ electrons, distributed
throughout the cluster volume [10]. Secondary electron models can reproduce
the basic properties of the radio halos provided that the strength of the mag-
netic field, averaged over the emitting volume, is larger than a few μG. They
predict synchrotron power-law spectra which are independent on cluster loca-
tion, i.e., do not show any features and/or radial steepening, and the spectral
index values are flatter than α ∼ 1.5 [20]. The profiles of the radio emis-
sion should be steeper than those of the X-ray gas (e.g. [67]). Since the radio
emitting electrons originate from protons accumulated during the cluster for-
mation history, no correlation to recent mergers is expected, but halos should
be present in virtually all clusters. Moreover, emission of gamma-rays and of
neutrinos is predicted.
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Present observational results, i.e., the behaviour of radio spectra (see
Sect. 3.1), the association between radio halos and cluster mergers (Sect. 4.1),
and the fact that halos are not common in galaxy clusters [81], are in favour of
electron reacceleration models. A two-phase scenario including the first phase
of particle injection, followed by a second phase during which the aged elec-
trons are reaccelerated by recent merging processes was successfully applied
by Brunetti et al. [19] to the radio halo Coma C, reproducing its observational
properties.

Reacceleration

In the framework of primary electron models, a cluster merger plays a cru-
cial role in the energetics of radio halos. Energy can be transferred from the
ICM thermal component to the non-thermal component through two possi-
ble basic mechanisms: (1) acceleration at shock waves [77, 107]; (2) resonant
or non-resonant interaction of electrons with magneto-hydrodynamic (MHD)
turbulence [19, 21, 51, 97].

Shock acceleration is a first-order Fermi process of great importance in ra-
dio astronomy, since it is recognized as the mechanism responsible for particle
acceleration in the supernova remnants. The acceleration occurs diffusively, in
that particles scatter back and forth across the shock, gaining at each cross-
ing and recrossing an amount of energy proportional to the energy itself. The
acceleration efficiency is mostly determined by the shock Mach number. In
the case of radio halos, however, the following arguments do not favour a
connection to merger shocks: (i) the shocks detected so far with Chandra at
the center of several clusters (e.g. A2744, [76]; A665, [88]; 1E0657-56, [89])
have inferred Mach numbers in the range of ∼ 1–2.5, which seem too low to
accelerate the radio halo electrons [53]; (ii) the radio emission of halos can be
very extended up to large scales, thus it is hardly associable with localized
shocks; (iii) the comparison between radio data and high resolution Chandra
X-ray data, performed by Govoni et al. [70], shows that some clusters exhibit
a spatial correlation between the radio halo emission and the hot gas regions.
This is not a general feature, however, and in some cases the hottest gas re-
gions do not exhibit radio emission; (iv) the radio spectral index distribution
in A665 [49] shows no evidence of spectral flattening at the location of the
hot shock detected by Chandra [88].

Although it cannot be excluded that shock acceleration may be efficient
in some particular regions of a halo (e.g. in A520, [92]), current observations
globally favour the scenario that cluster turbulence might be the major mech-
anism responsible for the supply of energy to the electrons radiating in radio
halos. Numerical simulations indicate that mergers can generate strong fluid
turbulence on scales of 0.1–1 Mpc. Turbulence acceleration is similar to a
second-order Fermi process and is therefore rather inefficient compared with
shock acceleration. The time during which the process is effective is only a few
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108 years, so that the emission is expected to correlate with the most recent
or ongoing merger event. The mechanism involves the following steps [12, 21]:

(1) the fluid turbulence which is injected into the ICM must be converted to
MHD turbulence; the mechanism for this process is not fully established
(although the Lighthill mechanism is mostly used in the recent literature);

(2) several types of MHD turbulence modes can be activated (Alfvèn waves,
slow and fast magnetosonic modes, etc.) and each of them has a different
channel of wave-particle interaction;

(3) the cascade process due to wave-wave interaction, i.e., the decay of the
MHD scale size to smaller values, must be efficient to produce the MHD
scale relevant for the wave-particle interaction, i.e., for the particle reac-
celeration process;

(4) the MHD waves are damped because of wave-particle interaction, so the
reacceleration process could be eventually reduced.

The particle reacceleration through Alfvèn waves has the following limi-
tations: (i) the scale relevant for wave-particle interaction is ∼ 1 pc, thus the
reacceleration process is efficient only after a significant cascade process; (ii)
Alfvèn waves are strongly damped through interaction with protons. It follows
that if protons are too abundant in the ICM, they suppress the MHD tur-
bulence and consequently the reacceleration of electrons. Brunetti et al. [21]
derived that the energy in relativistic protons should be < 5%–10% than the
cluster thermal energy to generate radio halos. In the case of fast magne-
tosonic (MS) waves, the difficulty of wave cascade to small scales is alleviated
by the fact that their scale of interaction with particles is of the order of a few
kpc. Moreover, the MS wave damping is due to thermal electrons, and thus
hadrons do not significantly affect the electron reacceleration process [24].
Therefore, fast MS waves represent a promising channel for the MHD turbu-
lence reacceleration of particles.

The emerging scenario is that turbulence reacceleration is the likely mech-
anism to supply energy to the radio halos. All the different aspects discussed
above need to be further investigated in time-dependent regimes, consid-
ering all types of charged particles [22], and the contribution of different
mechanisms.

4.3 Relativistic Electrons in Radio Relics

Peripheral cluster regions do not host a sufficiently dense thermal proton
population which is required as the target for the efficient production of sec-
ondary electrons, and therefore secondary electron models cannot operate in
the case of relics. There is increasing evidence that the radio emitting parti-
cles in relics are powered by the energy dissipated in shock waves produced
in the ICM by the flows of cosmological large-scale structure formation. The
production of outgoing shock waves at the cluster periphery is indeed ob-
served in numerical simulations of cluster merger events [106]. Because of the
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electron short radiative lifetimes, radio emission is produced close to the lo-
cation of the shock waves. This is consistent with the almost perpendicular
to the merger axis elongated structure of relics. The electron acceleration re-
quired to produce the relic emission could result from Fermi-I diffusive shock
acceleration of thermal ICM electrons [33], or by adiabatic energization of
relativistic electrons confined in fossil radio plasma, released by a former ac-
tive radio galaxy [34, 35, 73]. These models predict that the magnetic field
within the relic is aligned with the shock front, and that the radio spectrum
is flatter at the shock edge, where the radio brightness is expected to decline
sharply.

The detection of shocks in the cluster outskirts is presently very difficult
because of the very low X-ray brightness of these regions. The X-ray data for
radio relics are indeed very scarce. The Chandra data of A754 [91] indicate
that the easternmost boundary of the relic coincides with a region of hotter
gas. From XMM data of the same cluster, Henry et al. [72] show that the
diffuse radio sources (halo + relic) appear to be associated with high pressure
regions.

4.4 Relativistic Electrons in Mini-Halos

Current models for mini-halos involve primary or secondary electrons, similar
to halos. Gitti et al. [62] suggest that the relativistic primary electrons are
continuously undergoing reacceleration due to the MHD turbulence associated
with the cooling flow region. Pfrommer & Enßlin [98], on the other hand,
discuss the possibility that relativistic electrons in mini-halos are of secondary
origin and thus are produced by the interaction of cosmic ray protons with the
ambient thermal protons. Predictions of these models are similar to those of
the halo models. The electron reacceleration model is favoured by the spectral
behaviour of the Perseus mini-halo, i.e. high frequency steepening and radial
spectral steepening [110], and by the observed correlation between the mini-
halo radio power and the cooling flow power [62]. Data on this class of diffuse
radio sources, however, are too poor to draw conclusions.

5 Cluster Magnetic Fields

The presence of magnetic fields in clusters is directly demonstrated by the
existence of large-scale diffuse synchrotron sources, which have been discussed
in Sect. 3. In this section, we present an independent way of obtaining indirect
information about the cluster magnetic field strength and geometry, using data
at radio wavelengths. This is the analysis of the Faraday rotation of radio
sources in the background of clusters or in the galaxy clusters themselves.

Measurements of the ICM magnetic fields can also be obtained through
X-ray data from the studies of cold fronts (e.g. [119]) and from the detection
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of non-thermal X-ray emission of inverse Compton origin, due to scattering
of the cosmic microwave background photons by the synchrotron electrons.
The latter emission can be detected in the hard X-ray domain (e.g. [52]),
where the cluster thermal emission becomes negligible. The studies in the
radio band are, however, the most relevant and provide the most detailed
field estimates.

5.1 Rotation Measure

The synchrotron radiation from cosmic radio sources is well known to be
linearly polarized. A linearly polarized wave of wavelength λ, traveling from
a radio source through a magnetized medium, experiences a phase shift of
the left versus right circularly polarized components of the wavefront, leading
to a rotation Δχ of the position angle of the polarization, according to the
law: Δχ = RM λ2, where RM is the Faraday rotation measure. The RM is
obtained as:

RM =
e3

2πm2
ec

4

L∫
0

neB · dl . (20)

In practical units, RM is related to the electron density ne, in units of cm−3,
and to the magnetic field along the line of sight B‖, in units of μG, through
the relation:

RM = 812

L∫
0

neB‖dl rad m−2 , (21)

where the path length l is in kpc. By convention, RM is positive (negative)
for a magnetic field directed toward (away from) the observer.

The RM values can be derived from multi-frequency polarimetric observa-
tions of sources within or behind the clusters, by measuring the position angle
of the polarized radiation as a function of wavelength. In general, the position
angle must be measured at three or more wavelengths in order to determine
RM accurately and remove the position angle ambiguity: χtrue = χobs ± nπ.
Once the contribution of our Galaxy is subtracted, the RM should be domi-
nated by the contribution of the ICM, and therefore it can be combined with
measurements of ne to estimate the cluster magnetic field along the line of
sight. This approach can be followed analytically only for simple distributions
of ne and B.

A recent technique to analyse and interpret the RM data is the RM Syn-
thesis, developed by Brentjens & De Bruyn [17], which uses the RM transfer
function to solve the nπ ambiguity related to the RM computation, and allows
one to distinguish the emission as a function of Faraday depth.

Below we present some simple cases, where the strength of the magnetic
field can be derived by RM measurements:
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Uniform Screen

In the simplest approximation of an external screen with uniform magnetic
field, no depolarization is produced and the rotation measure follows directly
from (21):

RM = 812 neB‖L, (22)

where ne is in cm−3, B‖ is in μG, and L is the depth of the screen in kpc.

Screen with Tangled Magnetic Field

The effect of a Faraday screen with a tangled magnetic field has been analyzed
by Lawler and Dennison [82] and by Tribble [116] in the ideal case that the
screen is made of cells of uniform size, with the same electron density and the
same magnetic field strength, but with field orientation at random angles in
each cell. The observed RM along any given line of sight will be generated
by a random walk process, which results in a gaussian RM distribution with
mean and variance given by:

〈RM〉 = 0 , σ2
RM = 〈RM2〉 = 8122 Λc

∫
(neB‖)2dl , (23)

where ne is in cm−3, B is in μG, and Λc is the size of each cell in kpc. A
tangled magnetic field also produces depolarization (see [116]).

Screen with Tangled Magnetic Field and Radial
Gas Density Distribution

The case of a screen with tangled magnetic field can be treated analytically if a
realistic cluster gas density distribution is considered, given that the cells have
uniform size, the same magnetic field strength and random field orientation.
If the gas density follows a hydrostatic isothermal beta model [25], i.e.,

ne(r) = n0(1 + r2/r2
c)

− 3β
2 , (24)

where n0 is the central electron density, and rc is the core radius of the gas
distribution, the value of the RM variance is given by:

σRM(r⊥) =
KBn0r

1
2
c Λ

1
2
c

(1 + r2
⊥/r2

c)
(6β−1)

4

√
Γ (3β − 0.5)

Γ (3β)
, (25)

where r⊥ is the projected distance from the cluster centre and Γ indicates
the Gamma function. The constant K depends on the integration path over
the gas density distribution: K = 624, if the source lies completely beyond the
cluster, and K = 441 if the source is halfway through the cluster.
For β=0.7 the previous formula becomes:
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σRM ≈ 575B
(1 + r2/r2

c)0.8
n0M

1
2 l . (26)

Note that depolarization is also produced, due to the fact that the magnetic
field is tangled.

5.2 Current Results from RM Studies

Cluster surveys of the Faraday rotation measures of polarized radio sources
both within and behind clusters provide an important probe of the existence
of intracluster magnetic fields. The RM values derived in background or em-
bedded cluster sources are of the order of tens to thousands rad m−2 (an
example is shown in Fig. 11). The observing strategy to derive information
on the magnetic field intensity and structure is twofold: (i) obtain the aver-
age value of the RM of sources located at different impact parameters of the
cluster, (ii) derive maps of the RM of extended radio sources, to evaluate the
σ of the RM distribution.

Studies have been carried out on both statistical samples and individual
clusters (see e.g. the review by Govoni & Feretti [69] and references therein).
Kim et al. [78] analyzed the RM of 53 radio sources in and behind clusters
and 99 sources in a control sample. This study, which contains the largest

Fig. 11. VLA contour plot of the tailed radio galaxy 0053-015 in A119 at 1.4 GHz
(left), and RM image (right). The values of RM range between –350 and +450 rad
m−2, with 〈RM〉 = + 28 rad m−2, and a dispersion of σRM = 152 rad m−2. They
show fluctuations on scales of ∼ 3.5 arcsec [44]
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cluster sample to date, demonstrated that μG level fields are widespread in
the ICM. In a more recent statistical study, Clarke et al. [27] analyzed RMs
for a representative sample of 16 cluster sources, plus a control sample, and
found a statistically significant broadening of the RM distribution in the clus-
ter sample, and a clear increase in the width of the RM distribution toward
smaller impact parameters (see Fig. 12). They derived that the ICM is perme-
ated with a high filling factor of magnetic fields at levels of 4–8 μG and with a
correlation length of ∼15 kpc, up to ∼0.75 Mpc from the cluster centre. The
results are confirmed by new data on an expanded sample [28].

The first detailed studies of RM within individual clusters have been per-
formed on cooling core clusters, owing to the extremely high RMs of the
powerful radio galaxies at their centres (e.g., Hydra A, [113]; 3C295, [1]).
High values of the magnetic fields, up to tens of μG, have been obtained,
but they only refer to the innermost cluster regions. Studies on larger areas
of clusters have been carried out e.g. for Coma [41], A119 [44], A514 [68],
3C129 [114].

Overall, the data are consistent with cluster atmospheres containing mag-
netic fields in the range of 1–5 μG, regardless of the presence or not of diffuse
radio emission. At the centre of cooling core clusters, magnetic field strengths
can be larger by more than a factor of 2. The RM distributions are generally
patchy, indicating that large-scale magnetic fields are not regularly ordered
on cluster scales, but have coherence scales between 1 and 10 kpc. In most
clusters the magnetic fields are not dynamically important, with magnetic
pressures much lower than the thermal pressures, but the fields may play a
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Fig. 12. Galaxy-corrected rotation measure plotted as a function of source impact
parameter in kiloparsecs for the sample of sources from Clarke et al. [27]. Open dots
refer to cluster sources, closed dots to control sources
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fundamental role in the suppression of the particle thermal conduction [26]
and in the energy budget of the ICM.

5.3 Magnetic Field Structure

The simplest model is a uniform field throughout the cluster. However, this
is not realistic: if the field values detected at the cluster centres extend over
several core radii, up to distances of the order of ∼ Mpc, then the magnetic
pressure would exceed the thermal pressure in the outer parts of the clusters.
The magnetic field intensity is likely to decrease with the distance from the
cluster centre, as derived in Coma [19]. This is also predicted as a result of
compression of the thermal plasma during the cluster gravitational collapse,
where the magnetic field-lines are frozen into the plasma, and compression of
the plasma results in compression of flux lines. As a consequence of magnetic
flux conservation, the expected growth of the magnetic field is proportional
to the gas density as B ∝ ρ2/3.

Dolag et al. [31] showed that in the framework of hierarchical cluster for-
mation, the correlation between two observable parameters, the RM and the
X-ray surface brightness, is expected to reflect the correlation between the
magnetic field and gas density. Therefore, from the analysis of the RM ver-
sus X-ray brightness it is possible to infer the trend of magnetic field versus
gas density. The application of this approach has been possible so far only
in A119, giving the radial profile of the magnetic field as B ∝ n0.9

e [31]. The
magnetic field decline with radius is confirmed in this case.

Another important aspect to consider is the structure in the cluster mag-
netic field, i.e. the existence of filaments and flux ropes [32]. The magnetic
field structure can be investigated by deriving the power spectrum of the field
fluctuations, defined as: |Bκ|2 ∝ κ−n, where κ represents the wave number of
the fluctuation scale. By using a semi-analytic technique, Enßlin & Vogt [36]
and Vogt & Enßlin [120] showed that the magnetic field power spectrum can
be estimated by Fourier transforming RM maps, if very detailed RM images
are available. Alternatively, a numerical approach using Monte Carlo simu-
lations has been developed by Murgia et al. [94] to reproduce the rotation
measure and the depolarization produced by magnetic field with different
power spectra.

5.4 Reconciling Values Derived with Different Approaches

The cluster magnetic field values obtained from RM arguments are about
an order of magnitude higher than those derived from both the synchrotron
diffuse radio emission (Sect. 3.1) and the inverse Compton (IC) hard X-ray
emission (e.g. [52]). The discrepancy can be alleviated by taking into account
that:
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• estimates of equipartition fields rely on several assumptions (see Sect. 2.3);
• Goldsmith & Rephaeli [64] suggested that the IC estimate is typically

expected to be lower than the Faraday rotation estimate, because of the
spatial profiles of the magnetic field and gas density. For example, if the
magnetic field strength has a radial decrease, most of the IC emission will
come from the weak field regions in the outer parts of the cluster, while
most of the Faraday rotation and synchrotron emission occurs in the strong
field regions in the inner parts of the cluster;

• it has been shown that IC models which include the effects of aged electron
spectra, combined with the expected radial profile of the magnetic field,
and anisotropies in the pitch angle distribution of the electrons, allow
higher values of the ICM magnetic field in better agreement with the
Faraday rotation measurements [19, 97];

• the magnetic field may show complex structure, as filamentation and/or
substructure with a range of coherence scales (power spectrum). Therefore,
the RM data should be interpreted using realistic models of the cluster
magnetic fields (see Sect. 5.3);

• Beck et al. [5] pointed out that field estimates derived from RM may be
too large in the case of a turbulent medium where small-scale fluctuations
in the magnetic field and the electron density are highly correlated ;

• it has been recently pointed out that in some cases a radio source could
compress the gas and fields in the ICM to produce local RM enhancements,
thus leading to overestimates of the derived ICM magnetic field strength
[105];

• evidence suggests that the magnetic field strength will vary depending on
the dynamical history and location within the cluster. A striking example
of the variation of magnetic field strength estimates for various methods
and in various locations throughout the cluster is given in [74].

Future studies are needed to shed light on these issues and improve our
current knowledge on the strength and structure of the magnetic fields.

5.5 Origin of Cluster Magnetic Fields

The field strengths that we observe in clusters greatly exceed the amplitude
of the seed fields produced in the early universe, or fields injected by some
mechanism by high redshift objects. There are two basic possibilities for their
origin:

(1) ejection from galactic winds of normal galaxies or from active and star-
burst galaxies [80, 121];

(2) amplification of seed fields during the cluster formation process.

Support for a galactic injection in the ICM comes from the evidence that
a large fraction of the ICM is of galactic origin, since it contains a significant
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concentration of metals. However, fields in clusters have strengths and coher-
ence size comparable to, and in some cases larger than, galactic fields [71].
Therefore, it seems quite difficult that the magnetic fields in the ICM derive
purely from ejection of the galactic fields, without invoking other amplification
mechanisms [29, 101].

Magnetic field amplification is likely to occur during the cluster collapse,
simply by compression of an intergalactic field. Clusters have present day over-
densities ρ ∼ 103 and in order to get BICM > 10−6 G by adiabatic compression
(B ∝ ρ2/3) requires intergalactic (seed) fields of at least 10−8 G. These are
somewhat higher than current limits derived in the literature [3, 11]. A possible
way to obtain a larger field amplification is through cluster mergers. Mergers
generate shocks, bulk flows and turbulence within the ICM. The first two of
these processes can result in some field amplification simply through compres-
sion. However, it is the turbulence which is the most promising source of non-
linear amplification. MHD calculations have been performed [30, 102, 112]
to investigate the evolution of magnetic fields. The results of these simula-
tions show that cluster mergers can dramatically alter the local strength and
structure of cluster-wide magnetic fields, with a strong amplification of the
magnetic field intensity. Shear flows are extremely important for the ampli-
fication of the magnetic field, while the compression of the gas is of minor
importance. The initial field distribution at the beginning of the simulations
at high redshift is irrelevant for the final structure of the magnetic field. The
final structure is dominated only by the cluster collapse. Fields can be am-
plified from initial values of ∼ 10−9 G at z = 15 to ∼ 10−6 G at the present
epoch [30]. Roettiger et al. [102] found a significant evolution of the structure
and strength of the magnetic fields during two distinct epochs of the merger
evolution. In the first, the field becomes quite filamentary as a result of stretch-
ing and compression caused by shocks and bulk flows during infall, but only
minimal amplification occurs. In the second, amplification of the field occurs
more rapidly, particularly in localized regions, as the bulk flow is replaced by
turbulent motions. Mergers change the local magnetic field strength drasti-
cally, but also the structure of the cluster-wide field is influenced. At early
stages of the merger the filamentary structures prevail. This structure breaks
down later (∼ 2–3 Gyr) and leaves a stochastically ordered magnetic field.
Subramanian et al [112] argue that the dynamo action of turbulent motions
in the intracluster gas can amplify a random magnetic field by a net factor of
104 in 5 Gyr. The field is amplified by random shear, and has an intermittent
spatial distribution, possibly producing filaments.

6 Radio Emission from Cluster Radio Galaxies

Recent results on the thermal gas in clusters of galaxies has revealed a signifi-
cant amount of spatial and temperature structure, indicating that clusters are
dynamically evolving by accreting gas and galaxies and by merging with other
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clusters/groups (roughly every few Gyrs). Simulations suggest that the ICM
within clusters is violent, filled with shocks, high winds and turbulence. This
gas can interact with a radio source in different ways: modifying its morphol-
ogy via ram pressure, confining the radio lobes, possibly feeding the active
nucleus. We discuss below some of the recent results on these topics (see also
the review of Feretti & Venturi [47]).

6.1 Interaction Between the Radio Galaxies and the ICM

Tailed Radio Galaxies

A dramatic example of the interaction of the radio galaxies with the ICM is
represented by the tailed radio galaxies, i.e. low-power radio sources (FR I
type, [38]) where the large scale low-brightness emission is bent towards the
same direction, forming features similar to tails. These radio galaxies were
originally distinguished in two classes: narrow-angle tailed sources (NAT),
which are “U” shaped with a small angle between the tails, and wide-angle
tailed sources (WAT), which are “V” shaped with a larger angle between the
tails (see Fig. 13). We note that distortions in powerful radio galaxies (FR II
type, [38]) are marginal and only present in weak structures.

The standard interpretation of the tailed radio morphology is that the
jets are curved by ram pressure from the high-velocity host galaxy moving
through the dense ICM, whereas the low brightness tails are material left
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Fig. 13. Examples of tailed radio galaxies: the NAT 0053-016 in the cluster A119
(left panel) and the WAT 3C465 in the cluster A2634 (right panel). The location
of the optical galaxy is indicated
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behind by the galaxy motion. The ram-pressure model was first developed by
Begelman et al. [7]. Following dynamical arguments, the bending is described
by the Euler equation:

R ∼ h

(
ρj

ρe

)(
vj

vg

)2

, (27)

where R is the radius of curvature, ρ is density, v is velocity (the subscript
j refers to the jet, e to the external medium, g to the galaxy) and h is the
scale height over which the ram pressure is transmitted to the jets. Thus,
from the jet bending, important constraints on both the jet dynamics and
the ICM can be placed. In some cases there is evidence that the radio jets
travel first through the galactic atmosphere and then are sharply bent at the
transition between the galactic atmosphere and the ICM. Bends can occur
very close to the nucleus, as in NGC 4869 in the Coma cluster [40], indicating
that the bulk of interstellar medium has been stripped by the galaxy during
its motion.

In general, the ram-pressure model can explain the radio jet deflection
when the galaxy velocity with respect to the ICM is of the order of ∼ 1000
km s−1. Therefore, it can successfully explain the structure of NAT sources,
which are indeed identified with cluster galaxies located at any distance from
the cluster centre and thus characterized by significant motion. However,
Bliton et al. [13] derived that NATs are preferentially found in clusters with
X-ray substructure. Additionally, NAT galaxies tend to have, on average, ve-
locities similar to those of typical cluster members, instead of high peculiar
motions expected if NATs were bent only from ram pressure. Thus, they sug-
gested a new model for the NAT formation, in which NATs are associated
with dynamically complex clusters with possible recent or ongoing cluster-
subcluster mergers. The U-shaped morphology is then suggested to be pro-
duced, at least in part, by the merger-induced bulk motion of the ICM bending
the jets. This is supported, in some clusters, by the existence of NAT radio
galaxies with their tails oriented in the same direction (e.g., A2163, Fig. 14;
A119, [44]), since it seems unlikely that their parent galaxies are all moving
towards the same direction.

The interpretation of WAT sources may be problematic in the framework
of the ram-pressure model, since these sources are generally associated with
dominant cluster galaxies moving very slowly (<∼ 100 km s−1) relative to the
cluster velocity centroid. Such slow motion is insufficient to bend the jets/tails
of WATs to their observed curvature by ram pressure. It has therefore been
suggested that WATs must be shaped mostly by other ram-pressure gradients
not arising from the motion of the host galaxy, but produced by mergers
between clusters [65, 85]. Numerical simulations lead support to this idea: peak
gas velocities are found well in excess of 1000 km s−1 at various stages of the
cluster merger evolution, which generally do not decay below 1000 km s−1 for
nearly 2 Gyr after the core passage. This is consistent with the observations,
as modelled in the cluster A562 (Fig. 15).
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Fig. 14. Radio image of the cluster A2163 at 1.4 GHz, with angular resolution of
15′′ [45]. The structure of tailed radio galaxies as detected at higher resolution is
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Radio Emission in X-ray Cavities

A clear example of the interaction between the radio plasma and the hot
intracluster medium was found in the ROSAT image of the Perseus cluster
[15], where X-ray cavities associated with the inner radio lobes to the north
and south of the bright central radio galaxy 3C84 have been first detected. The
high spatial resolution of the Chandra X-ray Observatory has confirmed the
presence of such X-ray holes [37], coinciding with the radio lobes and showing
rims cooler than the surrounding gas. Chandra has permitted the detection
of X-ray deficient bubbles in the inner region of many cooling flow clusters,
e.g., Hydra A, A2052, A496, A2199, RBS797. These features are discussed by
C. Jones et al. in this volume.

6.2 Trigger of Radio Emission

An important issue is to understand whether and how the cluster environ-
ment plays any role in the statistical radio properties of galaxies, in partic-
ular their probability of forming radio sources. The high density of galaxies
within clusters, especially in the innermost cluster regions, and the peculiar
velocities of galaxies, most extreme in merging clusters, enhance the proba-
bility of galaxy–galaxy interactions. These special conditions raise the ques-
tions whether cluster galaxies have enhanced probability of developing a radio
source, and whether they tend to have more powerful and long lived radio
emission.

A powerful statistical tool to address the above questions is the radio
luminosity function (hereafter RLF). The fractional RLF is defined as:

fi(P, z) =
ρi(P, z)
φi(z)

, (28)

where φi(z) is the density of objects of a particular class i at the epoch z,
and ρi(P, z) is the density of the same class objects showing a radio emission
of power P. The fractional RLF, f(P ), thus represents the probability that
a galaxy in a defined sample at a given epoch emits with radio power in
the interval P ± dP . From an operational point of view, the RLF can be
expressed as:

f(P ) =
n(ΔPi)
N(ΔPi)

, (29)

where n and N are respectively the number of detected radio galaxies in
the power interval ΔPi and the total number of optical galaxies which could
have been detected in the same power bin. The integral form of the RLF
F (> P ) can be obtained simply summing over all radio power intervals up
to the power P . In order to take into account the correlation between the
optical and radio properties of galaxies, it is useful to introduce the bivariate
luminosity function f(P,M), which gives the probability that a galaxy with
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absolute magnitude in the range M ±dM is radio emitting in the radio power
range P ± dP .

The RLF of galaxies in clusters has been first investigated by Fanti [39],
and latter by Ledlow and Owen [83]. The most striking result is that statisti-
cal properties of radio galaxies are surprisingly similar for sources both inside
and outside rich clusters. For both cluster and non-cluster galaxies, the only
parameter relevant for the radio emission seems to be the optical magnitude,
i.e. brighter galaxies have a higher probability of developing a radio galaxy.
Furthermore, the radio luminosity function is independent on richness class,
Bautz-Morgan or Rood-Sastry cluster class. Recently, Best et al. [9] demon-
strated that, while the radio power of a radio galaxy does not correlate to its
mass, the probability of a galaxy to become a radio source is a very strong
function of both stellar mass and central black hole mass.

It is still under debate whether the universality of the local RLF for early
type galaxies can be applied also to merging clusters. According to some au-
thors (e.g. [54, 118]) the enhanced probability of galaxy interaction in merging
clusters has no effect on the probability of galaxies to develop a radio active
galactic nucleus in their centres.

In the cluster A2255, instead, Miller & Owen [93] found an excess of pow-
erful radio galaxies, which is interpreted as due to the dynamical state of the
cluster. Best [8] showed that the fraction of radio loud AGN appears to be
strongly dependent upon the large scale environment of a galaxy. This sup-
ports the argument that a merger process may affect the AGN activity, since
infalling galaxies or galaxy groups more likely produce galaxy interactions or
galaxy–galaxy mergers which can trigger the AGN activity. The effect of clus-
ter merger processes on the trigger of radio emission would imply an enhanced
number of radio source in cluster at high redshift, i.e. at the earlier epochs
when the clusters are being assembled. These issues are under investigation.
The result of Branchesi et al. [16] points to a higher number of radio galaxies
in distant clusters, although with poor statistics. In conclusion, whereas the
ICM in clusters has strong effect on the structures of radio galaxies, the prob-
ability of forming radio sources is likely unaffected by the cluster environment,
but may be affected by cluster mergers.

Other effects of the interaction between galaxies and ICM, as the trigger
of star formation, the gas stripping, HI deficiency, etc., are discussed by other
authors in this volume.
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103. Röttgering, H., Snellen, I., Miley, G., et al.: ApJ, 436, 654 (1994)
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108. Schuecker, P., Böhringer, H.: Diffuse thermal and relativistic plasma in galaxy
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1 Introduction

X-ray observations allow the abundance of several elements in the intracluster
medium (ICM) to be measured and optical observations allow similar stud-
ies for galaxies. Taken together, we have at hand the possibility of studying
chemical evolution on the large scale of clusters of galaxies, and in doing so
we have the opportunity to learn several aspects of how both galaxies and
clusters work and evolve.

The topics to be covered by these lectures include:

• Metals in the ICM and galaxies: how much of them and how they got there
• Metal Production: Supernovae of Type Ia, their progenitors and rate
• Metal Production: Supernovae of Type II and the IMF
• The main epoch of metal production in clusters
• Clusters as anempirical nucleosynthesis template
• The chemical evolution of the universe
• The global chemical evolution of the Milky Way galaxy.

2 Metals in the ICM

In one of the rare cases in which theory anticipates observations, the exis-
tence of large amounts of heavy elements in the intracluster medium (ICM)
was predicted shortly before it was actually observed [64]. This came from
(now old-fashioned) so-called monolithic models of elliptical galaxy forma-
tion, in which the observed color-magnitude relation is reproduced in terms
of a metallicity trend. In turn, this trend is established by supernova-driven
galactic winds being more effective in less massive galaxies with shallower po-
tential wells, compared to more massive galaxies, harbored in deep potential
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wells. While these models are now inadequate in many respects, their predic-
tion was confirmed the following year by the discovery of the strong Iron-K
line in the X-ray spectrum of galaxy clusters [73].

The iron and other heavy element production, and circulation on the
galaxy cluster scale, has been widely discussed since their early discovery
[1, 6, 21, 23, 57, 68, 71, 84, 91, 93, 99, 119].

Figure 1 shows the ASCA X-ray spectrum of the inner and outer regions
of the cluster A496 [34], which best-fit temperatures are respectively ∼ 3.4
and ∼ 4.2 keV. Emission lines of several elements are clearly visible, with the
most prominent feature being the Iron-K line at ∼ 7 keV. Figure 2 shows
the XMM-Newton X-ray spectrum of the core of the Virgo cluster, with the
individual contribution of the various elements from a synthetic spectrum
[46]. As fully detailed in the lectures by Craig Sarazin, the continuum X-ray
emission is due to electron bremsstrahlung, while the lines come from decays
from higher energy levels which are populated by collisional excitations. Thus,
for example, the Fe K line comes from the transitions down to the K shell of
H-like and He-like iron ions, while the Fe L complex comes from transitions
down to the L shell of iron ions with 3 or more bound electrons. Obtaining
abundances from such spectra is universally achieved using packages [90],
which are based on theoretically calculated collisional excitation probabilities.
Therefore, the derived abundances of simple ions (e.g., H-like and He-like)
should be regarded as more reliable than those of ions still with many bound
electrons.
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2.1 Iron

Iron is the best studied element in clusters of galaxies since ICM iron emis-
sion lines are present in all clusters and groups, either warm or hot. Figure 3
shows the iron abundance in the ICM of clusters and groups as a function of
ICM temperature from an earlier compilation [97]. For kT∼> 3 keV the ICM
iron abundance is constant at ZFe � 0.3Z�

Fe, independent of cluster tempera-
ture [29]. Abundances for clusters in this horizontal sequence come from the
Iron-K complex at ∼ 7 keV. At lower temperatures the situation is much less
straightforward. Figure 4 shows data from [17], with the iron abundance hav-
ing been derived with both one-temperature and two-temperature fits. The
one-temperature fits give iron abundances for these cool groups which are
more or less in line with those of the hotter clusters. The two-temperature-fit
abundances, instead, form an almost vertical sequence, with a great deal of
dispersion around a mean ∼ 0.75 solar. Earlier estimates gave extremely low
values for cooler groups, kT∼< 1 keV [75]. Compiling values from the litera-
ture a strong dependence of the abundance on ICM temperature is apparent,
being very low at low temperatures, steeply increasing to a maximum around
kT ∼ 1.5−2 keV, then decreasing to reach ∼ 0.3 solar by kT ∼ 3 keV [78, 93].
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Is this strong temperature dependence real? Perhaps some caution is in
order? Besides the ambiguity as to whether one- or two-temperature fits are
preferable, additional uncertainties on the iron abundances at kT∼< 2 keV are
due to them being derived from the Iron-L complex at ∼ 1 keV, where the
emission lines are due to transitions to the L level of iron ions with three or
more electrons. In these cooler groups/clusters most of the iron is indeed in
such lower ionization stages, and the iron-K emission disappears. The atomic
configurations of these more complex ions are not as simple as those giving
rise to the iron-K emission, and their (calculated) collisional excitation prob-
abilities may be more uncertain. In summary, iron abundances derived from
the iron-L emission should be regarded with a little more caution, compared
to those from the iron-K emission.
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Abundances shown in Fig. 3 refer to the cluster central regions. However,
radial gradients in the iron abundance have been reported for several clus-
ters, starting with ASCA and then ROSAT data [34, 38, 40, 43, 122]. From
Beppo-SAX data a systematic study of the radial distribution of iron in many
clusters has been conducted [30], and Fig. 4 shows that clusters break up in
two distinct groups. The so-called cool core clusters (CC, formerly known as
cooling flow (CF) clusters before the failure of the CF model was generally
acknowledged) are characterized by a steep iron gradient in the core, reaching
∼ 0.6 solar near the center. Instead, in non-CC clusters (where no tempera-
ture gradient is found) no metallicity gradient appears either. The origin of
the dichotomy remains to be fully understood and will be discussed later. It
appears that silicon follows iron in the CC clusters, while instead there ap-
pears to be no abundance gradient in the lighter elements, such as oxygen,
sulfur, etc. [70]. The fact that metallicity gradients are found in association
with large temperature gradients in the central regions may look suspicious, as
noted for the strong dependence of ZFe on ICM temperature, but the existence
of such gradients appears to be well established.

Figure 5 shows the the iron abundance in clusters at high redshifts, in-
cluding some at z > 1 [111]. Clearly, there is no appreciable departure from
the ∼ 0.3 solar abundance typical of the nearby clusters, indicating that the
bulk of iron was produced and distributed in the ICM well before z = 1.
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Fig. 5. The iron abundance in the ICM (lower panel) and the ICM temperature
(upper panel) of a sample of high redshift clusters as a function of redshift [111].
The dashed line shows the typical abundance of z ∼ 0 clusters
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2.2 Elemental Ratios

X-ray observatories (especially ASCA, Beppo-SAX and XMM-Newton) have
such high spectral resolution that, besides those of iron, the emission lines of
many other elements can be detected and measured. These include oxygen,
neon, magnesium, calcium, silicon, sulfur, argon, and nickel. Most of these are
α elements (i.e., made by an integer number of α particles), which are pre-
dominantly synthesized in massive stars exploding as Type II supernovae. As
it is well known, iron-peak elements are also produced by Type Ia supernovae,
and 50–75% of iron in the sun may come from them.

Early estimates from ASCA suggested a sizeable α-element enhancement,
with 〈[α/Fe]〉 � +0.4 [77], later reduced to +0.2 [79] and eventually found
to be consistent with solar proportions 〈[α/Fe]〉 � 0.0 [57]. More recently,
Finoguenov et al. (2000) report near solar Ne/Fe, slightly enhanced Si/Fe,
and slightly depleted S/Fe, although with rather large error bars. From a sys-
tematic re-analysis of the ASCA archival data, a systematic increase of silicon
and nickel and a decrease of sulfur with ICM temperature was reported [7] (see
Fig. 6). Note that both silicon and sulfur are α elements, and apparently they
do not follow the same trend. Note that the iron abundance has a pronounced
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abundances), as a function of ICM temperature, from archival ASCA data [7]
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peak at T ∼ 2 keV, which in conjunction with the increase of silicon would
imply a very strong increase of the Si/Fe ratio with cluster temperature. If
taken at face value, such a trend implies a progressive dominance of SN II’s
over SN Ia’s in hotter and hotter clusters. No simple interpretation has so far
emerged of why the SN mix should be sensitive to the cluster environment,
and some caution is in order before accepting the reality of the trend. Indeed,
one can note that Fe is most accurately determined from Fe K, i.e., in clusters
hotter than ∼ 2.5 keV, while Si is best determined in cooler clusters, because
this element becomes virtually fully ionized in hot clusters. As a consequence
the Si lines become very weak, hence with low S/N (note the increasing size
of the Si error bars in Fig. 6). As a result, the Si/Fe ratio is poorly determined
in cool as well as hot clusters.

Figure 7 shows more recent data from XMM-Newton, in which no apparent
trend with cluster temperature is present in either iron or α-elements [108].
Therefore, I would conclude that no compelling evidence has so far emerged
for other than near solar [α/Fe] ratios globally in the ICM, especially when
all α elements are lumped together. This leaves the possibility open for stellar
nucleosynthesis having proceeded in much the same way in the solar neighbor-
hood as well as at the galaxy cluster scale. In turn, this demands a similar ratio
of the number of Type Ia to Type II SNs, as well as a similar IMF, suggesting
that the star formation process (IMF, binary fraction, etc.) is universal, with
little or no dependence on the global characteristics of the parent galaxies
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Fig. 7. The abundance of iron and the α-elements oxygen, sulfur, and silicon as a
function of cluster temperature, as from XMM-Newton data [108]
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(and their large scale structure environment) in which molecular clouds are
turned into stars.

Alternatively, one can take at face value the variations of the abundance
ratios with cluster temperature, as well as the overabundance of some α ele-
ments and the underabundance of others. One can then be forced to accept
rather contrived conclusions, such as the mix of the two SN types, and perhaps
even the nucleosynthesis of massive stars, depends on what the temperature
of the ICM will become billions of years after star formation has ceased. On
the other hand, one may argue that rich galaxy clusters are “special” places
in many senses, and that ICM abundances reflect not only supernova nucle-
osynthesis yields, but also how efficiently these are ejected, mixed into, and
retained by the ICM. However, no simple understanding of the apparent em-
pirical trends has yet emerged [41, 47, 67]. Still, the story may be different
for the cool-core clusters, which are characterized by a strong gradient in the
iron abundance within the cool core. I shall return to cool-core clusters later.

In summary, in the following I will assume that clusters, on a global scale,
have solar elemental ratios and the total heavy element abundance is 0.3 solar,
or 0.006 by mass.

2.3 The Iron Mass-to-Light Ratio

One useful quantity is the iron-mass-to-light ratio (FeM/L) of the ICM, i.e.
the ratio M ICM

Fe /LB of the total iron mass in the ICM over the total B-band
luminosity of the galaxies in the cluster. In turn, the total iron mass in the
ICM is given by the product of the iron abundance times the mass of the
ICM, i.e., M ICM

Fe = MICMZFe
ICM. Figure 8 shows the resulting FeM/L from an

earlier compilation [97]. The drop of the FeM/L in poor clusters and groups
(i.e. for kT∼< 2 keV) can be traced back to a drop in both the iron abundance
(which however may not be real, see above) and in the ICM mass. Such groups
appear to be gas poor compared to clusters, which suggests that they may
have been subject to baryon and metal losses due to strong galactic winds
driving much of the ICM out of them [28, 91, 93], or such winds having pre-
heated and inflated the gas distribution around galaxies, thus prevents it to
fall inside groups. In one way or another, the break seen in Fig. 8 is likely to
be related to the break of self-similarity in the X-ray luminosity-temperature
relation (see later).

In these lectures I will mainly deal with clusters with kT∼> 2–3 keV,
for which the interpretation of the data appears more secure, but several
cautionary remarks are in order, even concerning these hotter clusters. The
first is that the iron abundances used to construct Fig. 8 did not take into
account that some clusters have sizable iron gradients. In principle, X-ray
observations can provide both the run of gas density and abundance with
radius, making it possible to integrate their product over the cluster volume
and get M ICM

Fe . To my knowledge, so far this has been completed only for one
cluster [89]. However, the extra-iron contained within the iron gradient core
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seems to be the product of the central cD galaxy, and may represent only a
small fraction of the whole M ICM

Fe [31].
Another concern is that two of the three ingredients entering in the calcu-

lation of the FeM/L values shown in Fig. 8 (namely MICM and LB) may not
be measured precisely in the same way in the various sources used for the com-
pilation. Both quantities come from a radial integration up to an ill-defined
cluster boundary, e.g., the Abell radius, the virial radius, or to a radius of
some fixed overdensity. Sometimes it is quite difficult to ascertain what def-
inition has been used by one author or another, with the complication that
X-ray and optical data have generally been collected by different groups using
different assumptions. There is certainly room for improvement here, and a
new compilation paying attention to analyse all clusters in a homogeneous
way would be highly desirable. Finally, estimated total luminosities LB refer
to the sum over all cluster galaxies, and do not include the population of stars
which are diffused through the cluster, and which may account for at least
∼ 10% of the total cluster light, and perhaps more [4, 37]. In any event, Fig. 9
shows a more recent compilation of FeM/L values [29], and compare them to
the old ones finding fair agreement.

While keeping these cautions in mind, we see from Figs. 8 and 9 that the
FeM/L runs remarkably flat with increasing cluster temperature, for kT∼> 2−
3 keV. This constancy of the FeM/L comes from both ZFe

ICM and MICM/LB

showing very little trend with cluster temperature, see Fig. 3 in this paper, and
Fig. 4 in [93], where MICM/LB � 25h−1/2

70 (M�/L�). The resulting FeM/L is
therefore

(FeM/L)ICM = ZFe
ICM

MICM

LB
� 0.3Z�

Fe25h−1/2
70 � 0.01 h−1/2

70 (M�/L�) , (1)
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i.e., in the ICM there are about 0.01 solar masses of iron for each solar lu-
minosity of the cluster galaxies. This value is ∼ 30% lower than adopted
in [93] and shown in Fig. 8, having consistently adopted here for Z�

Fe the rec-
ommended meteoritic iron abundance [2], i.e., Z�

Fe = 0.0013. Assuming solar
elemental proportions for the ICM, the ICM metal mass to light ratio is there-
fore ∼ 0.3× 0.02× 25h−1/2

70 = 0.15 (M�/L�), having adopted Z� = 0.02 and
for h70 = 1.

A very accurate analysis was performed recently for the A1983 cluster [89],
paying attention to measure MICM and LB within the same radius. The result
is FeM/L= (7.5 ± 1.5) × 10−3h

−1/2
70 (M�/L�), in fair agreement with the

estimate above.
The most straightforward interpretation of the constant FeM/L is that

clusters did not lose iron (hence baryons), nor differentially acquired pristine
baryonic material, and that the conversion of baryonic gas into stars and
galaxies has proceeded with the same efficiency and the same stellar IMF in
all clusters [93]. Otherwise, there should be cluster to cluster variations of
ZFe

ICM and FeM/L. All this is true in so far as the baryon to dark matter ratio
is the same in all kT∼> 2 keV clusters [123], and the ICM mass-to-light ratio
and the gas fraction are constant. Nevertheless, there may be hints for some
of these quantities showing (small) cluster to cluster variations [5, 74, 89], but
no firm conclusion has yet been reached.
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2.4 The Iron Share Between ICM and Cluster Galaxies

The metal abundance of the stellar component of cluster galaxies is derived
from integrated spectra coupled to synthetic stellar populations. Much of the
stellar mass in clusters is confined to passively evolving spheroids (ellipticals
and bulges) for which the iron abundance ZFe

∗ may range from ∼ 1/3 solar
to a few times solar. For example, among ellipticals metal-sensitive spectral
features such as the magnesium index Mg2 range from values slightly lower
than those in the most metal rich globular clusters of the Milky Way bulge
(which are nearly solar), to values for which models indicate a metallicity a
few times solar [69]. The FeM/L of cluster galaxies is then given by:

(FeM/L)gal = ZFe
∗

M∗
LB

� 0.0046 h70 (M�/L�) , (2)

where ZFe∗ = Z�
Fe and one has adopted M∗/LB = 3.5 h70. This estimate comes

from the M/LB determinations for a sample of ellipticals [116], which have
been used to derive the an average 〈M/LB〉 = 4.2 h70 when adopting the Coma
cluster luminosity function [123]. This value is finally reduced to 3.5 h70 taking
into account a likely ∼ 30% dark matter contribution to the total mass within
the galaxy effective radius [18]. The total cluster FeM/L (ICM+galaxies) is
therefore ∼ 0.015 (M�/L�), for h70 = 1. The ratio of the iron mass in the
ICM to the iron mass locked into stars and galaxies is then

ZFe
ICMMICM

ZFe∗ M∗
� 2.2h−3/2

70 , (3)

having adopted ZFe
ICM = 0.3 solar, ZFe

∗ = 1 solar, and MICM/M∗ = 9.3h−3/2
70

as for the Coma cluster [123]. So, it appears that there is ∼ 2 times more iron
mass in the ICM than locked into cluster stars (galaxies), perhaps even more
if ZFe∗ is subsolar due to an abundance gradient within individual galaxies [3].
In turn, this empirical iron share (ICM vs. galaxies) sets a strong constraint
to models of the chemical evolution of galaxies. Under the same assumptions
as above, the total metal mass to light ratio (ICM + galaxies) is therefore
∼ 0.15h−1/2

70 + 0.07h70 � 0.2 (M�/L�). This can be regarded as a fully
empirical determination of the metal yield of (now) old stellar populations.

I would like to emphasize that the values of the total, cluster FeM/L and
of the iron share derived in this section strictly depend on the adopted values
of M∗/LB and MICM/LB, which may be subject to change as better estimates
become available.

3 Metal Production: the Parent Stellar Population

The constant FeM/L of clusters means that the total mass of iron in the ICM
is proportional to the total optical luminosity of the cluster galaxies [6, 23,
91, 104]. The simplest interpretation is that the iron and all the metals now
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in the ICM have been produced by supernovae belonging to the same stellar
generation whose surviving low-mass stars now radiate the bulk of the cluster
optical light. As much of the cluster light comes from old spheroids (ellipticals
and bulges), one can conclude that the bulk of cluster metals were produced by
the same stellar generations that make up the old spheroids that we see today
in clusters.

It is also interesting to ask which galaxies have produced the bulk of the
iron and the other heavy elements, i.e. the relative contribution as a function of
the present-day luminosity of cluster galaxies. From their luminosity function
it is easy to realize that the bright galaxies (those with L∼> L∗) produce the
bulk of the cluster light, while the dwarfs contribute a negligible amount of
light in spite of dominating the galaxy counts by a large margin [109]. In
practice, most galaxies don’t do much, while only the brightest ∼ 3% of all
galaxies contribute ∼ 97% of the whole cluster light. Giants dominate the
scene while dwarfs don’t count much. Following the simplest interpretation,
according to which the metals were produced by the same stellar population
that now shines, one can conclude that also the bulk of the cluster metals have
been produced by the giant galaxies that contain most of the stellar mass. The
relative contribution of dwarfs to ICM metals may have been somewhat larger
than their small relative contribution to the cluster light, since metals can
more easily escape from their shallower potential wells [109]. This is, however,
unlikely to alter the conclusion that the giants dominate metal production by
a very large margin.

Up to about 3/4 of the whole mass in stars in the local universe is now in
spheroids, ∼ 1/4 in disks, and less than 1% in irregular galaxies [10, 33, 44].
In clusters the dominance of spheroids is likely to be even stronger than in the
general field. The prevalence of spheroids offers an opportunity to estimate the
epoch (redshift) at which (most) metals were produces and disseminated, since
we now know quite well when most stars in cluster spheroids were formed.

Following the first step in this direction [16], I believe that the most precise
estimates of the age (redshift of formation) of stellar populations in cluster
elliptical galaxies come from the tightness of several correlations, such as the
color-magnitude, fundamental plane, and the Mg2−σ relations, and especially
by such relations remaining tight all the way to z ∼ 1 [96, 105, 117]. This has
taught us that the best way of breaking the age-metallicity degeneracy in
the global proprties of stellar populations is to look back at high redshift
galaxies. The collective evidence indicates that most stars in cluster ellipticals
formed at z∼> 3, while only minor episodes of star formation may have occurred
later.

With most of the star formation having taken place at such high red-
shift, the major fraction of cluster metals should also have been produced and
disseminated at z∼> 3. Little evolution of the ICM composition is then ex-
pected all the way to high redshifts, with the possible exception of iron from
SNIa’s, for which the rate of release does not closely follow the star formation
rate (SFR), as does the SNII rate, but for which the rate of release of iron is
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modulated by the distribution of the delay times between formation of the pre-
cursor and explosion time. As illustrated in the next section, one expects that
the SNIa rate peaks shortly after a burst of star formation and then rapidly
declines, with most events taking place within 1–2 Gyr after formation. If this
is the case, no appreciable evolution of the iron abundance in clusters should
be detectable from z = 0 to z ∼ 1 – an argument supported by observational
evidence [111]. Note, however, that late winds will keep enriching the ICM at
a decreasing rate [23].

4 Metal Production: Type Ia vs. Type II Supernovae

Most heavy elements (metals) are produced by supernovae (SN), of which
there are two main types: supernovae of Type II (SNII) result from the core
collapse of massive stars (M∼> 8M�), while supernovae of Type Ia (SNIa)
result from the thermonuclear explosion of a degenerate star, i.e., a white
dwarf. Their relevance to the metal enrichment in clusters is discussed next.

4.1 Iron from SNIa’s, SNIa Progenitors and SNIa Rate

As it is well known, clusters are now dominated by E/S0 galaxies, which
produce only Type Ia SNs at a rate of ∼ (0.16 ± 0.06)h2

70 SNU [19], with
1 SNU corresponding to 10−12 SNs yr−1L−1

B�. Assuming such rate to have
been constant through cosmological times (∼13 Gyr), the number of SNIa’s
exploded in a cluster of present-day luminosity LB is therefore ∼ 1.6×10−13×
1.3× 1010LBh

2
70 � 2× 10−3LB. With each SNIa producing ∼ 0.7M� of iron,

the resulting FeM/L of clusters would be:
(
MFe

LB

)
SNIa

� (1.4 ± 0.5) × 10−3h2
70, (4)

which falls short by a factor ∼ 10 compared to the observed cluster FeM/L
(0.015 for h70 = 1). The straightforward conclusion is that either SNIa’s did
not play any significant role in manufacturing iron in clusters, or their rate in
what are now E/S0 galaxies had to be much higher in the past. This argues
for a strong evolution of the SNIa rate in E/S0 galaxies and bulges, with the
past average being ∼ 5 − 10 times higher than the present rate [23].

In the case of SNIa’s we believe we know fairly precisely the amount of
iron released by each event, while we still don’t know for sure what are the
progenitors producing the events. There is universal agreement that SNIa’s
originate from the thermonuclear explosion of white dwarfs (WD) made of
carbon and oxygen (CO), once they reach the Chandrasekhar limit (∼ 1.4M�)
by having accreted mass from a donor binary companion. Carbon is then
ignited explosively and the star disrupts completely. The event produces ∼
0.7M� of iron-peak elements, mostly 56Ni, which decays into 56Co and finally
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into 56Fe, powering the SN light curve. Along with iron, ∼ 0.15−0.28M� of
silicon are also synthetized [58].

Several different evolutionary paths, however, may lead to the SN explo-
sion, and each of them would be characterized by a different evolution of the
past SNIa rate. Two main channels are currently considered as viable, the so-
called single-degenerate (SD) and the double-degenerate (DD) channel. In the
SD case, a CO-WD accretes hydrogen-rich material from a companion-star,
and processes it through H and He burning, increasing the CO mass until the
WD exceeds the Chandrasekhar limit [121]. The case of helium being ignited
explosively, even before the Chandrasekhar limit is reached, has also been
considered (SD/Sub-Chandra exploders), but the resulting synthetic spectra
differ markedly compared to those of observed SNIa’s [66]. In the DD option,
the secondary star in the binary is also a WD, and the two stars spiral in
towards eachother, due to angular momentum loss via gravitational wave ra-
diation (GWR), until the less massive star fills its Roche lobe and the two
WDs merge together [56]. Once again, a SNIa may result if the combined mass
exceeds the Chandrasekhar limit.

In the SD channel, the time of explosion, i.e. the delay between the star
formation event and the supernova, is set by the time it takes the secondary
(less massive) star to evolve off the main sequence and fill its Roche lobe.
Hence the delay strongly increases with decreasing mass and, in principle,
delay times of order the Huble time are possible, provided ∼ 1M� donors are
able to transfer enough mass to grow the WD beyond the threshold mass for
ignition. In the DD channel, the delay time is further augmented by the time
it takes the secondary WD to spiral in, due thanks to the GWR, which is
given by:

τGWR =
0.15A4

(MWD
1 + MWD

2 )MWD
1 MWD

2

Gyr , (5)

where A is the intial separation of the DD system in units of the solar radius,
and the two WD masses are also in solar units. Also in this case delay times
can easily exceed the Hubble time. In both cases, the minimum delay time is
set by the lifetime of the maximum initial mass that produces a WD remnant,
i.e. ∼ 35 Myr, the lifetime of 8M� stars [55].

The run of the past SNIa rate is therefore proportional to the distribution
function of the delay times, and hence depends on the distributions of the
initial binary parameters (i.e., masses M1 and M2, and separations), since a
wide range of them can lead to a successful explosion, as well as additional
parameters describing the mass transfer phases that take place in the course
of the binary evolution and their outcome.

The distributions of the delay times fIa(τ) for both the SD and DD chan-
nels have been recently calculated in a fashion that allows one for an effec-
tive exploration of the parameter space [49], and the results are shown in
Figs. 10 and 11, respectively. The distributions can differ widely, but have
several characteristics in common: (a) fIa(τ) = 0 for τ < 35 Myr, (b) from
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Fig. 10. The distribution function of the delay times for the SD model for the
production of Type Ia supernovae, and for various values of the IMF slope (IMF∝
M−α) and and the slope γ of the distribution function of the binary initial mass
ratios q = M2/M1 (with f(q) ∝ qγ). The distributions present two cusps, one at
τ ∼ 1 Gyr, which is due to the requirement that the primary produces a CO-WD,
and the second at τ ∼ 8 Gyr is due to the requirement that the mass of the WD
plus the mass of the envelope of the secondary star exceeds the Chandrasekhar limit
(from [49])

zero, fIa(τ) steeply increases, reaching is maximum by τ∼< 108 yr, (c) the
maximum is followed by a plateau phase with a duration ∼< 1 Gyr and is not
model-dependent, (d) the plateau is followed by a decline with a rate which
is extremely model-dependent, especially in the SD scenario, and (e) in the
SD case the late decline is much steeper than in the DD case. This is caused
by the fact that at late times (e.g., 10 Gyr after the burst of star formation)
the secondary components have quite low mass ∼ 1M�, their envelope mass
available for transfer to the WD is just a fraction of this, and therefore suc-
cessful exploders are restricted only to those few systems with very massive
WDs. In general, the late decline is primarily controlled by the distributions
of the binary masses that lead to a SNIa event in the SD case, and by the
distribution of the initial separations of the WD+WD systems in the DD case,
which are both difficult to predict. Nevertheless, properties (a), (b), (c) and
(e) are generic, i.e., common to all combinations of model assumptions and
parameters.

At first sight the various curves in Figs. 10 and 11 look very similar to
each other, but it is only the use of a log-log plot that gives this impression.
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Figure 12 shows as function of time (not log-time) the distributions of delay
times for various model parameters, both for the SD and the DD cases. The
curves are all normalized to give the same SNIa rate at t = 10 Gyr, equivalent
to force all models to account for the present SNIa rate in ellipticals. Clearly,
the time integrals of the delay times (which are proportional to the total
number of SNIa events) differ dramatically from one case to another, and
therefore so does the amount of iron from SNIa’s predicted by the various
models. This is shown in Fig. 13, where the FeM/L predicted by various
models is plotted as a function of the SNIa rate at t = 12 Gyr divided by the
average rate in the past [48]. Clearly some models dramatically overpredict the
FeM/L compared to the cluster value, while others dramatically underpredict
it. By and large, SD models appear to be excluded, because the late decline
of their rate is too fast: if forced to account for the present rate in ellipticals
their past rate would have been too high. Therefore, this comparison favors
DD models, actually some particular version of them [48].

This conclusion, however, rests on the assumption that nature has chosen
only one path to make SNIa’s (either DD or SD), but by no means can we
exclude that nature is able to make SNIa’s from both SD and DD precursors.
If so, the theoretical delay times shown in these figures suggest that SDs would
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dominate at early times, and DDs would dominate at late times, as indicated
in Fig. 11. In any event, the bottom line is that these theoretical SNIa rates
predict that the bulk of iron should be produced within 1–2 Gyr from the
major phase of star formation phase in ellipticals.

The distributions of delay times derived for the SD and DD channels are
sharply at variance with those derived from the SNIa statistics at high redshift
by the GOODS “Piggyback” transient survey [107]. From the counts of SNIa’s
up to z = 1.55 in the GOODS fields, and from the cosmic history of star
formation, it was claimed that such data would require the minimum delay
time to be of the order of ∼ 2 Gyr, with an average delay time of ∼ 4 Gyr.
Indeed, their best-fit solution is a Gaussian distribution fluctuation centered
at τ = 4 Gyr, with σ = 0.8 Gyr [107]. With only one possible exception,
a distribution such as this bears no resemblance whatsoever to any of the
theoretical distributions shown here or in [49], or ever considered for SNIa’s
existing scenarios (e.g., [126]). The exception would be a DD model in which
the donor is a helium WD, which typically requires ∼ 1 Gyr to appear after
the formation of a stellar population. The explosion, however, would need to
be a helium detonation that could ignite the underlying C–O core, but which
would give a spectrum totally at variance with the observed SNIa spectra.
I conclude that either we have so far completely missed the identification of
the nature of the SNIa progenitors, or the mentioned estimate of the rate
at z ∼ 1.5 is severely biased. Being based on only 2 events at z > 1.4. I’m
inclined to favor this latter option.

4.2 Iron and Metals from SNII’s and the IMF

In the case of SNIa’s, we currently believe to have a fairly precise knowledge of
the amount of iron produced by each event, while the nature of the progenitors
and the evolution of the SN rate still remain as open issues. The case of Type
II SN’s is quite the opposite: we believe to have unambiguously identified
the progenitors (stars more massive than ∼ 8M�), while a great uncertainty
affects the amount of iron M II

Fe(M) produced by each SNII event as a function
of the progenitor’s mass. This is due to the fundamental difficulty for core-
collapse SN models to precisely locate the mass cut between the collapsing
core that forms the neutron star remnant, and the ejected envelope. This cut
is often within the iron-peak layer. On the other hand, the SN luminosity at
late times can be used to infer the amount of radioactive Ni-Co (and hence
eventually iron) that was ejected. An early study indicated small variations
from one event to another (0.04−0.10M�) [81]. This led to the assumption
that M II

Fe is a weak function of initial mass, with an average yield of 0.07M�
of iron per SN event (as in SN 1987A) [93]. More recent studies, based on a
larger sample of SNII events, have actually detected very large differences from
one event to another (ranging from ∼ 0.002M� to ∼ 0.3M� [114]). Figure 14
shows the mass of ejected 56Ni as a function of the velocity of the ejecta [51],
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Fig. 14. The mass of 56Ni ejected by a well studied sample of Type II supernovae,
as a function of the velocity of the ejecta; from [51]

and averaging over the 22 SNII’s in the sample one gets 〈MNi〉 = 0.073M�,
so close to the adopted value.

The total number of SNIIs –NSNII– is obtained by integrating the stellar
IMF from 8 to 40 M� for example, with the IMF being expressed as [95]:

φ(M) = a(t, Z)LBM
−s , (6)

where a(t, Z) is a (slow) function of the SSP age and metallicity. For example,
for t = 12 Gyr, a(Z) = 2.22 and 3.12, respectively for Z = Z� and Z = 2Z�
[69], with LB and M expressed in solar units.

Clearly, the flatter the IMF slope, the larger the number of massive stars
per unit present luminosity, the larger the number of SNII’s, and the larger the
implied FeM/L. Thus, adopting 〈M II

Fe〉 = 0.07M� and a = 3 and integrating
over the IMF one gets:

(
MFe

LB

)
SNII

=
M II

FeNSNII

LB
�

⎧⎪⎨
⎪⎩

0.003 for s = 2.7
0.009 for s = 2.35
0.035 for s = 1.90

(7)

Hence, if the Salpeter IMF (s = 2.35) applies also to clusters ellipticals, then
SNII’s underproduce iron by less than factor of ∼ 2.

Constraints on the IMF slope in cluster ellipticals can be derived from the
evolution of their M/L ratio with redshift, as inferred from the shift of the
fundamental plane in clusters at increasingly high redshifts. This is illustrated
in Fig. 15, showing the evolution of the M/LB ratio all the way to z = 1.27,
which indeed favors a Salpeter IMF [100].
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At z = 0, however, elliptical galaxies harbour ∼ 12 Gyr old stellar popula-
tions, with stars of ∼ 1M� at the main sequence turnoff (MSTO). By z = 1.5
the precursors of such populations have an age of only ∼ 3 Gyr, and corre-
spondingly a higher mass at the MSTO, but not by much so. Specifically, the
MSTO mass at an age of ∼ 3 Gyr is ∼ 1.4−1.5M�, and therefore by following
the evolution of the FP with redshift up to z ∼ 1.5 (or equivalently of the
mass-to-light ratio) we explore the IMF slope within the rather narrow mass
interval 1∼< M∼< 1.4M�. In practice, we measure the slope of the IMF only
near M = M�.

Given that iron is produced by both types of supernovae, iron is not the
best element to constrain the IMF slope in the high mass range. Instead, α
elements are produced almost exclusively by SNII’s, and therefore the IMF
slope can better be constrained by them, and in particular by oxygen and
silicon, which abundance in the ICM is affected by relatively small errors.
Therefore, in a similar way to the case for iron, the metal-mass-to-light ratio
for the “X” element can be calculated in a straightforward manner from:

MX

LB
= a(t, Z)

∫ 40

8

mX(M)M−sdM , (8)

where mX(M) is the mass of the element “X” which is produced by a star of
mass M . Adopting a(t, Z) = 3, mX(M) for oxygen and silicon from [124], and
integrating (8), one obtains the oxygen- and the silicon-mass-to-light ratios
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which are shown in Fig. 16 as a function of the IMF slope [100]. As expected,
the MO/LB and MSi/LB ratios are extremely sensitve to the IMF slope. The
values observed in clusters of galaxies (ICM plus galaxies)1 are ∼ 0.1 and
∼ 0.01M�/L� respectively for oxygen and silicon [39, 88]. These empiri-
cal values are reported in Fig. 16 showing that with the Salpeter IMF slope
(s = 2.35) the standard explosive nucleosynthesis from Type II supernovae
produces just the right amount of oxygen and silicon to account for the ob-
served MO/LB and MSi/LB ratios in cluster of galaxies, having assumed that
most of the cluster B-band light comes from ∼> 12 Gyr old stellar populations.

Figure 16 also shows that with s = 1.35 such a top heavy IMF (in various
circumstances invoked to ease discrepancies between theories and observa-
tions) would overproduce metals by more than a factor of 20. This is indeed
the change one expects in MO/LB, MSi/LB, etc. for a change in the IMF slope
Δs = 1 when considering that the light LB is provided by ∼ M� stars and
the metals by ∼ 25M� stars.

In summary, it appears that, with a Salpeter IMF and standard nucleosyn-
thesis prescriptions, massive stars can produce the observed amonts of oxygen
and silicon which are present in clusters of galaxies, while perhaps falling short
by a factor ∼ 2 to produce the observed iron. Yet, with an IMF just slightly
shallower than Salpeter, SNII’s could make also all the iron. There should
then however be clearer evidence for an α-element overabundance than cur-
rently indicated by the observations(cf. Fig. 7). Hence, nucleosynthesis may

1 These values result from averaging over the reported values for individual clusters
with different ICM temperature, and take into account that ∼10–30% of the
stellar mass in clusters is not bound to individual galaxies [4, 45].
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well have proceeded in clusters not unlike in the Milky Way, where we cur-
rently believe that about ∼ 1/2 of iron has been produced by core-collapse
Type II supernovae, and the other half by thermonuclear Type Ia supernovae.
I shall discuss later the chemical evolution of clusters and the Milky Way.
With 2.35∼< s∼< 2.7 and a past average rate of SNIa’s in ellipticals ∼> 5 times
the present rate, the iron content of clusters and the global ICM [α/Fe] ratio
are grossly accounted for, with SNIa’s then having produced ∼ 1/2 of the
total cluster iron, not unlike in standard chemical models for the Milky Way.
This is not to say that this has been firmly proved, but it seems to me to be
premature to abandon the attractive simplicity of a universal nucleosynthe-
sis process (i.e., IMF and SNIa/SNII ratio) before embarking towards more
complex, multi-parametric scenarios.

5 Metals from Galaxies to the ICM:
Ejection vs. Extraction

Having established that most metals in clusters are in the ICM and not in
the ISM of their parent galaxies, it remains to be understood how they were
transfered from galaxies to the ICM. There are two main possibilities: extrac-
tion by ram pressure stripping as galaxies plow through the ICM, and ejection
by galactic winds powered from within the galaxies themselves. In the latter
case the power can be supplied by supernovae (the so-called star formation
feedback) and/or by AGN activity.

Ram pressure stripping certainly exists in clusters [102], as clusters are
assembled by growing group and isolated galaxies which, by entering a dense
ICM, are stripped of their gas and then become quiescent. Several arguments,
however, favor ejection over extraction [99]:
 There appears to be no trend of either ZFe

ICM or the FeM/L with cluster
temperature or cluster velocity dispersion (σv), while the efficiency of ram
pressure stripping increases steeply with increasing σv.
 Field ellipticals appear to be virtually identical to cluster ellipticals. They
follow basically the same Mg2 − σ and fundamental plane relations [11, 12],
which does not show any appreciable trend with the local density of galaxies,
or at most a very weak one. If stripping was responsible for extracting metals
from galaxies one would expect galaxies in low density environments to have
retained more metals, hence showing higher metal indices for given σ, which
is not seen.
 Non-gravitational energy injection of the ICM seems to be required to ac-
count for the break of the self-similar X-ray luminosity-temperature relation
for groups and clusters [86]. While galactic winds are an obvious vehicle
for such pre-heating, no pre-heating is associated to metal transfer by ram
pressure.
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 Strong galactic (super)winds are actually observed in starburst galaxies at
low and high redshift, which are thought to be the progenitors of local ellip-
ticals [52, 83, 106, 118].
 Most metals have been produced at very early times (z∼> 3), probably well
before the clusters were assembled, hence before the dense ICM was in place,
hence when there was not much ram pressure exerted on the galaxies.

One can quite safely conclude that metals in the ICM have been ejected
from galaxies by supernova (or AGN) driven winds, rather than stripped by
ram pressure [34, 91]. Two kinds of galactic winds are likely to operate: early
winds driven by the starburst forming much of the galaxy’s stellar mass itself,
and late winds or outflows where the gas comes from the cumulative stellar
mass loss as the stellar populations passively age. Late winds are also likely
to operate, as the stellar mass loss from the aging population flows out of
spheroids, being either continuously driven by a declining SNIa rate [23], or
intermittently by recurrent AGN activity [24].

5.1 The Metallicity Gradients in Cool-Core Clusters

Besides showing a radial gradient in the iron abundance (see Fig. 4), virtu-
ally all CC clusters host a cD galaxy at their center [30]. Hence, it is quite
natural to associate the two phenomena, and attribute to the cD galaxy the
responsibility to have further enriched the central regions of the clusters. This
possibility has been recently explored in some detail [15], and Fig. 17 shows
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the main results of this analysis. Both ratios [Fe/Si] and [Fe/O] depend on the
relative proportion of the two supernova types that contribute to the nucle-
osynthesis, with the asterisk showing the ratio from SNII’s only. By increasing
the proportion of iron contributed by SNIa’s, the ratios move along the tra-
jectories shown by the various lines in Fig. 17, which refer to different SNIa
models. The data points refer to the central regions (typically within 100 kpc)
of the indicated (CC) clusters. It appears that these regions are exceptionally
rich in SNIa products, which can be interpreted as due to the late winds for the
cD’s, powered by SNIa’s themselves [23], and/or recurrent AGN activity [24].

By the way, sitting at the bottom of the cluster potential well, cD galaxies
experience no ram pressure, yet, they appear to have further enriched the
“Cool Core” of CC clusters. This is a further argument for a dominant role
of winds in transfering metals from galaxies to the ICM.

6 Metals as Tracers of ICM Pre-heating

The total amount of iron (and metals) in clusters represents a record of the
overall past supernova activity as well as the history of the mass and energy
ejected from cluster galaxies. The empirical values FeM/L can be used to set
a constraint on the energy injection into the ICM by supernova-driven galactic
winds [92]. The total SN heating is given by the kinetic energy released by one
SN (∼ 1051 erg) times the number of SNs that have exploded. It is convenient
to express this energy per unit present optical light LB, i.e.:

ESN

LB
= 1051 NSN

LB
= 1051

(
MFe

LB

)TOT 1
〈MFe〉 � 1050 (erg/L�) , (9)

where the total (ICM+galaxies) FeM/L=0.015 M�/L� is adopted, and the
average iron release per SN event is assumed to be 0.15M� (appropriate if
SNIa’s and SNII’s contribute equally to the iron production). This estimate
should be accurate to within a factor ∼ 2.

The kinetic energy injected into the ICM by galactic winds, again per unit
cluster light, is given by 1/2 the ejected mass (M ICM

Fe /ZFe
w ) times the typical

wind velocity squared, i.e.:

Ew

LB
=

1
2
M ICM

Fe

LB

〈
v2
w

ZFe
w

〉
� 1.5 × 1049Z

Fe
�

ZFe
w

·
( vw

500 kms−1

)2

� 1049 (erg/L�) ,

(10)

where the empirical FeM/L for the ICM has been used, and the average
metallicity of the winds ZFe

w is assumed to be two times solar. As usual in
the case of thermal winds, the wind velocity vw is of the order of the escape
velocity from individual galaxies. Again, this estimate may be regarded as
accurate to within a factor of 2, or so.

A first inference is that of order of ∼ 5%–20% of the kinetic energy released
by SNs is likely to survive as kinetic energy in galactic winds, thus contributing



Metals in Clusters of Galaxies 201

to the heating of the ICM. A roughly similar amount goes into work to extract
the gas from the potential well of individual galaxies, while the rest of the SN
energy has to be radiated away locally and does not contribute to the feedback.
This estimated energy injection represents a small fraction of the thermal
energy of the ICM of rich (hot) clusters and so it has only a minor impact
on the history of the ICM. However, in groups it represents a non-negligible
fraction of the thermal energy of the ICM, thus affecting its evolution and
present structure. The necessity of some non-gravitational heating (or pre-
heating) was recognized from the break of the self-similarity demanded by the
observed X-ray luminosity-temperature relation, especially when groups are
included [86].

The estimated ∼ 1049 erg/L� correspond to a pre-heating of ∼ 0.1 keV
per particle, for a typical cluster MICM/LB � 25 M�/L�. This is ∼> 10 times
lower than the ∼ 1 keV/particle pre-heating that some models require to
fit the cluster LX − T relation [13, 39, 84, 110, 125]. This estimate depends
somewhat on the gas density (hence environment and redshift) where/when
the energy is injected, because what matters is the entropy change induced
by the pre-heating, ΔS = kΔT/n

2/3
e [13, 20, 60]. Hence the required energy

decreases if it is injected at a lower gas density. Nevertheless, this extreme (1
keV/particle) requirement would be met only if virtually all the SN energy
were to go into increasing the thermal energy of the ICM. Such extreme pre-
heating requirement points toward an additional energy (entropy) source, such
as AGN energy injection [115, 125]. Note however that in powerful starbursts
most SNs explode inside hot bubbles made by previous SNs, thus reducing
radiative losses, and the feedback efficiency may approach unity [53]. More
recently it has been suggested that pre-heating requirements may be relaxed
somewhat if the energy injection takes place at relatively low density, so as
to boost the entropy increase with less energy deposition [87]. For example,
pre-heating could take place within the filaments, prior to the time when they
coalesce to form clusters. Indeed, if much of the star formation in cluster
ellipticals took place at z∼> 3, it likely predates by a long time the assembly
of clusters. Further exploration of the metal enrichment connections to pre-
heating are found in [14, 38].

7 Clusters vs. Field at z = 0 and the Overall Metallicity
of the Universe

To what extent are clusters fair samples of the z ∼ 0 universe as a whole? In
many respects clusters look much different from the field, e.g., in the morpho-
logical mix of galaxies, or in the star formation activity, which in clusters has
almost completely ceased while it is still going on in the field. Yet, when we re-
strict ourselves to some global properties, clusters and field are not so different.
For example, the baryon fraction of the universe is Ωb/Ωm � 0.16 ± 0.02 [9],
which compares ∼ 0.15 as estimated for clusters [123] adopting h70 = 1. This
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tells us that no appreciable baryon vs. dark matter segregation has taken place
at a cluster scale [123], a prediction that X-ray observations should be able
to check.

Even more interesting may be the case of the stellar mass over baryonic
mass in clusters and in the field. For the field, i.e., the local universe, the contri-
bution of stars to Ω is estimated as Ω∗ = 0.0035h−1

70 [44], or Ω∗ = 0.0041h−1
70

from the 2dF K-band luminosity function [25], with a ∼ 15% uncertainty
(adopting a Salpeter IMF). The total baryon density is Ωb = 0.039h−2

70 , as de-
rived from the Standard Big Bang nucleosynthesis (and confirmed by WMAP
[9]). This gives a global baryon to star conversion efficiency Ω∗/Ωb � 0.10h70,
i.e., over the whole cosmic time ∼ 10% of the baryons have been converted
and locked into stars. At the galaxy cluster level, the same efficiency can be
measured directly, and following [123] one gets:

M∗
MICM + M∗

� 1

9.3h−3/2
70 + 1

� 0.1. (11)

One can safely conclude that the efficiency of baryon to galax-
ies/stars conversion has been ∼ 10%, quite the same in the “field”
as well as within rich clusters of galaxies. At this very basic level, the
environment seems to be irrelevant! Note that we may be living in a rather
special time, as the friction of baryons locked in stars must have evolved at
a different rate in clusters and in the field, with clusters freezing at the 10%
level at a much higher redshift (z ∼ 3) compared to the field (z∼< 1).

Two interesting inferences can be drawn from this intriguing cluster-field
similarity:
 The metallicity of the present universe is ∼ 1/3 solar. The metal-
licity of the local universe has to be virtually identical to that measured in
clusters (∼ 1/3 solar), since star formation, hence the ensuing metal enrich-
ment, have proceeded to the same level of baryon consumption (∼ 10%). In an
analogy to clusters, a majority share of the metals now reside out of galaxies
in a warm/hot intergalactic medium (WHIM) containing the majority of the
baryons. Most baryons as well as most metals in the local universe remain
unaccounted for, but observational efforts are currently being made to detect
them [26, 80].
 The thermal energy (temperature) of the local universe is about
the same as the pre-heating energy of clusters. Similar overall star for-
mation activities most likely result not only in similar metal productions but
also in similar energy depositions by galactic winds. Hence, the temperature
of the local IGM is likely to be kT ∼ 0.1−1 keV, whatever the physical na-
ture of the cluster pre-heating turns out to be. Again, attempts are currently
going on to detect this metal rich WHIM. The detection of OVI absorption
clouds, physically located within the Local Group [80] as well as at moderate
redshift [101], are important steps in this direction.
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At z ∼ 0 field early-type galaxies (ETG) show very little, yet detectable
differences with respect to their cluster analogues [12, 35], implying typical
ages only ∼ 1Gyr younger than ETGs in clusters. Moreover, bulges appear
very similar to ellipticals in their integrated properties, such as the Mg2 − σ
and fundamental plane relations [36, 59]. In the well-studied case of the Milky
Way bulge no trace of stars younger than halo-bulge globular clusters could
be found [127]. At z ∼ 1 old ETGs are also found in sizable numbers in the
general field, while it appears that star formation may have been a little more
extended than in clusters [8, 22, 112].

Therefore, spheroids in the general field appear almost as old as cluster
ellipticals, i.e., with the bulk of their stellar populations having formed at
z∼> 2–3. Given this, it is estimated that at least 65% of the stellar mass is at
least 8 Gyr old, or formed at z > 1 [54]. With ∼ 50% of the stellar mass in
spheroids that formed ∼> 80% of their mass at z∼> 2–3, one can conclude that
∼> 30% of the stellar mass we see today was already in place by z ∼ 3 [94].
This indirect estimate is ∼ 3 times higher than directly measured in the HDF-
N [32]. However, this latter result may be subject to cosmic variance given
the small size of the explored field, and a value as high as ∼ 30% cannot be
excluded by current observations [42].

7.1 The Metallicity of the Universe at z = 3

With ∼ 30% of all stars having formed by z = 3, also ∼ 30% of the met-
als should have been formed before such an early epoch. I have argued that
the global metallicity of the present-day universe is ∼ 1/3 solar, hence, the
metallicity of the z = 3 universe should be ∼ 1/10 solar [94], because by that
redshift the universe has experienced only ∼ 1/3 of the cumulative star for-
mation all the way to the present. This simple argument supports the notion
of a prompt initial enrichment of the early universe. While the ∼ 10% solar
metallicity at z = 3 is a very straightforward estimate however, its direct
observational test is not so easy.

Figure 18 [82] shows that at z = 3 the universe had already developed to
become extremely inhomogeneous in chemical composition, with the metallic-
ity ranging from supersolar in the central regions of young/forming spheroids
and in QSOs likely hosted by them, down to ∼ 10−3 solar in the Lyα forest.
Making the proper (mass-) average abundance of the heavy elements requires
to know the fractional mass of each baryonic component at z = 3 – not an
easy task. Sometimes the Lyα forest is considered as representative of the
global metallicity of the high-z universe, as it may fill most of the volume and
perhaps contain most of the baryons. But at best it may provide an estimate
of the volume-averaged metallicity, which is irrelevant. What matters is in
fact the mass-averaged metallicity, which I argue can be ∼ 100 times higher
at z ∼ 3 than the volume-averaged one. At this early time most metals are
likely to be locked into stars, in metal rich winds, and in shocked IGM which
has already diluted wind materials, and none of these components qualify as
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Fig. 18. Summary of current knowledge of metal abundances at z ∼ 3. On the
vertical axis the logarithmic abundance relative to solar is reported. The horizontal
axis gives the typical linear dimensions of the structures for which direct abundance
measurements are available. This figure has been adapted from [82] by the inclusion
of the box for “young spheroidals” for which the estimate is indirect, as based on the
present day observed metallicity range and on the estimated redshift of formation.
The figure also includes the approximate location of the OVI absorbers [103], and
the hypothetical location of the intergalactic medium enriched and pre-heated by
early galactic winds

Lyα absorbers. Instead, a metal rich WHIM may have been detected thanks
to its OVI absorption [103]. By and large, Lyα absorbers are very poor tracers
of cosmic chemical evolution.

8 Clusters vs. the Chemical Evolution of the Milky Way

The Galactic bulge luminosity is ∼ 5.5 × 1010 LK,� [61] and LBULGE
B �

6 × 109LB,� respectively in the K and in the B band. If we take the cluster
empirical yield of metals (∼ 0.2 × LB M�) as universal, it follows that the
Galactic bulge has produced MZ � 0.2LBULGE

B = 0.2 × 6 × 109 � 109M� of
metals. Where are all these metals? One billion solar masses of metals should
not be easy to hide: part must be in the stars of the bulge itself, part must
have been ejected by winds. The stellar mass of the bulge follows from its K-
band mass to light ratio, MBULGE

∗ /LK = 1 [62, 127], and its luminosity, and
hence MBULGE∗ � 1010M�. Its average metallicity is about solar or slightly
lower [72, 127], i.e. Z = 0.02, and therefore the bulge stars all together contain
∼ 2 × 108M� of metals. Only ∼ 1/5 of the metals produced when the bulge
was actively star forming some 11–13 Gyr ago are still in the bulge! Hence,
∼ 80%, or ∼ 109M� were ejected into the surrounding space by an early wind.
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At the time of bulge formation, such ∼ 109M� of metals ran into largely
pristine (Z = 0) material, experienced R–T instabilities leading to chaotic
mixing, and establishing a distribution of metallicities in a largely inhomo-
geneous IGM surrounding the young Milky Way bulge. For example, this
enormous amount of metals was able to bring to a metallicity 1/10 solar (i.e.
Z = 0.002) about 5 × 1011M� of pristine material, several times the mass of
the yet to be formed Galactic disk. Therefore, it is likely that the Galactic
disk formed and grew out of such pre-enriched material, which provides a
quite natural solution to the classical G-Dwarf problem [98].

But there is another very intriguing aspect of chemical evolution that is
revealed by the comparison of the Milky Way to clusters of galaxies [88].
Both for the Galactic disk and for clusters one can estimate the empirical
metal yield, i.e., the ratio of the mass of metals to the mass of stars. Thus, in
the MW disk we have:

ydisk � Z�(M∗ + 0.2M∗)
M∗

= 1.2Z� (12)

assuming that both stars and the ISM are solar metallicity on average and the
mass of the disk ISM is ∼ 20% the mass of the stars in the disk. In clusters
we have instead:

yclusters � Z�(M∗ + 0.3 × 5 ×M∗)
M∗

= 2.5Z� , (13)

where stars in clusters are again assumed to be solar metallicity, the ICM is
assumed 0.3 solar, and 5 times more massive than stars in galaxies. Thus, the
apparent yield of clusters is about twice that of the Galactic disk. Actually,
the difference could be even larger, if one adopts a MICM/M∗ ratio as high as
in [88].

Two opposite solutions of the discrepant yields are discussed in [88]:
 Option A: The IMF in galaxy clusters is flatter than in the Galactic disk,
hence with a top-heavy IMF more massive stars are produced, hence more
metals.
 Option B: The IMF is the same in the disk as in clusters, but the discrepancy
arises from not having counted metals produced by the MW disk stars which
have been ejected by disk winds, i.e., the disk has lost metals (just like the
bulge).
Option A is favored by [88] based on two arguments: (1) if B were true then
most chemical evolution models of the MW galaxy would be wrong, and (2)
there is no evidence for star formation in the disk causing mass loss, but
material ejected in galactic fountains sooner or later would fall back to the
disk. I think that this choice is premature, but cannot be ruled out either.
It is certainly true that Option B would cause some problems to chemical
evolution models, as they usually rest on three assumptions that may not be
valid. Namely, (1) that disks started forming out of pristine (Z = 0) material,
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(2) that they grow by accumulating pristine (Z = 0) material, and (3) that
disks don’t lose any mass.

In favor of Option A, the argument can be put forward that, even if indi-
vidual star-formation events follow a universal IMF, the resulting global IMF
depends on the distribution function of the mass of individual (star cluster
size) formation events [63, 120]. Hence galaxies, where most of star forma-
tion originated in powerful starbursts, will closely follow the universal IMF,
while quiescent star formation resulting from many small individual events
may have a somewhat steeper IMF. Therefore, it is not so inconceivable that
elliptical galaxies (which formed in powerful starbursts and which dominate
clusters) may have a flatter IMF than the MW disk.

On the other hand, while the present SFR in the MW disk is very low
(∼ 1− 2M�yr−1), it may have been much higher in the past. Actually, it has
been argued that most of the factor of ∼ 10 increase in the global SFR between
z = 0 and z ∼ 1 is due to an increase within disks [50, 65]. If so, just a few
Gyr ago the MW disk was forming stars much more violently than is currently
observed, and substantial ejection of metals from the disk is therefore not at
all inconceivable. By the same token, if most of the disk build-up was through
stronger bursts than observed today, then the global disk IMF may also be
close to that in ellipticals. Thus the choice between Option A and B is still
an open debate.

9 Summary

With these lectures I hope to have conveyed the feeling that the chemistry
of galaxy clusters is at the crossroads of many interesting astrophysical and
cosmological issues, and that we can learn a lot from their study. A number of
unexpected inferences are derived, starting from a few empirical facts, namely,
the iron and metal content of the ICM and cluster galaxies, the fraction of
the baryons locked into stars in clusters and in the field, and the age and
baryon-fraction of stellar populations of galactic spheroids. Such inferences
include:
• In clusters and in the general field alike there are more metals in the gas that
has diffused out of galaxies (ICM and IGM) than there are locked into stars
inside galaxies (only ∼ 10%). The loss of metals to the surrounding media is
therefore a major factor in the chemical evolution of galaxies. Furthermore, at
this global level, the outcome of star formation through cosmic time is largely
independent of environment, most likely just because a major fraction of all
stars formed before cluster formation.
• Various arguments support the notion that the metals now in the ICM/IGM
were ejected by galactic winds, rather then being extracted from galaxies by
ram pressure.
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• Having processed the same fraction of baryons into stars, the global metal-
licity of the local universe has to be nearly the same that one can measure in
clusters, i.e., ∼ 1/3 solar.
• For the same reason, one expects the IGM to have experienced nearly the
same amount of pre-heating as the ICM, and therefore to be at a temperature
of ∼ 0.1–1 keV, regardless of the amount of pre-heating that is required for
clusters.
• Given the predominance and formation redshift of galactic spheroids, both
in clusters as well as globally in the universe, it is likely that the universe
experienced a prompt metal enrichment, with the global metallicity possibly
reaching ∼ 1/10 solar already by z ∼ 3. Most metals remain unaccounted for
at low-redshift as well as at high-redshift, however, and are likely to reside
in a warm/hot IGM (WHIM) whose existence may have been revealed by
observational data.
• This same scenario may be valid down to the scale of our own Milky Way
galaxy, with early winds from the forming Galactic bulge having pre-enriched
to ∼ 1/10 solar a much greater mass of gas, out of which the Galactic disk
started to form and evolve.
• The empirical metal yield of clusters is at least twice that of the MW disk.
This signals that either the stellar IMF of the disk is a little steeper than that
of ellipticals, or that the disk has lost at least as many metals than it has
produced.
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1 Introduction

Clusters of galaxies are massive structures found at the intersections of the fil-
aments of the cosmic web, and following General Relativity, they significantly
deform locally the Space-Time. Thus light rays of distant objects passing
through a cluster are deflected, and the resulting images appear distorted and
amplified: hence cluster of galaxies act as powerful gravitational lenses. Clus-
ter lensing comes into two flavors: (1) strong lensing, characterized by effects
that can readily be seen by eye: giant arcs, multiple images, and arclets; and
(2) weak lensing, which can only be characterized in a statistical way. Sci-
ence topics using cluster lenses can be divided into three broad categories:
(i) study of the lens(es): the understanding of the cluster mass distribution
and issues related to cluster formation and evolution, as well as constraining
the nature of the (Dark) Matter particles; (ii) study of the lensed objects: the
understanding of the lensed galaxy population and issues related to galaxy
formation and evolution; and (iii) study of the geometry of the Universe: lens
equations depend on angular diameter distances, and thus on the cosmological
parameters, offering a possible test of cosmological models.

In these lecture notes, following a historical perspective on lensing, I will
introduce the basics of gravitational lensing theory. Then I will discuss mea-
surements of cluster masses using strong and weak lensing and finally, I will
discuss the use of cluster lensing as a tool to probe the distant Universe and to
constrain cosmology. I will conclude these lectures with a discussion on future
prospects.

2 Historical Perspective

When Albert Einstein presented the General theory of Relativity, one of the
proposed observational tests was the deflection of light by massive objects.
Indeed, the light deflection in General Relativity is twice the value derived
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in the Newtonian approximation. In the case of the Sun deflecting light from
distant stars, one expects a deflection angle of 1.75 arcsec at the limb of our
Sun. The adventurous, Sir Arthur Eddington, led in 1919 an eclipse expedition
to Principe Island in West Africa with the aim to verify Einstein’s new theory.
Eddington’s successful experiment, confirming Einstein’s theory, was the first
astronomical observation of the gravitational lensing phenomenon.

Later on, in the early days of modern cosmology, soon after one realized
that the Universe was expanding and that Dark Matter was likely the domi-
nant component in clusters of galaxies [147], Fritz Zwicky [148] suggested that
gravitational lensing will be an invaluable tool to: (i) trace and measure the
amount of Dark Matter (DM), thought to pervade the cosmos; and (ii) study
magnified distant objects.

Zwicky’s courageous predictions were based on a good understanding of
the properties of gravitational lensing, but at that time, technology and the
lack of understanding of cluster of galaxies and gravitational lensing hampered
much progress and discovery.

Although clusters of galaxies are known for about two centuries, first rec-
ognized by Messier and Herschel as “remarkable concentrations of nebulae on
the sky” (see the review of Biviano [12] and reference therein), their study
only really matured in the 1950’s. In particular, the publication of the first
comprehensive cluster catalogue in the nearby Universe by Abell [1] can be
considered as a milestone in the history of cluster of galaxies.

In comparison, gravitational lensing theory only developed latter in the
1960’s with a few theoretical studies showing the usefulness of lensing for
astronomy. In particular, Sjur Refsdal derived the basic equations of gravita-
tional lens theory [111] and subsequently showed how the gravitational lens
effect can be used to determine Hubble’s constant by measuring the time
delay between two lensed images [112]. Following the discoveries of quasars,
Barnothy [7] linked gravitational lensing to the study of quasars. And with
the discovery of the first double quasar Q0957+561 by Walsh, Carswell &
Weymann [143] gravitational lensing really emerged in astronomy. Interest-
ingly, the large separation (6.1 arcsec) of Q0957+561 (z = 1.41) can only
be explained with the magnification boost of the cluster in which resides the
lensing galaxy.

Despite the fact that clusters of galaxies were starting to be well studied
astronomical objects in the late 1970’s and early 1980’s, in particular thanks
to the study of the X-ray emitting intra-cluster with the Einstein X-ray tele-
scope and the numerous optical studies of galaxies in clusters, almost nothing
was discussed in theoretical papers regarding their lensing effect. The work by
Narayan, Blandford & Nityananda [95] is probably one of the earliest account
of the possibility that clusters can act as a powerful lens. In particular they
proposed that the large separation of the first double quasar Q0957+561 can
only be explained if the lensing was “cluster-assisted”. The likely explanation
of the lack of interest of clusters in lensing research was probably the belief
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that clusters were sufficiently diffuse and extended systems that they could
not act as powerful lenses.

It, thus, came as quite a surprise when, in the mid 80’s “giant arcs”,
strongly elongated images of galaxies in the core of massive clusters were
discovered [81, 134]. This new phenomenon was then recognized by Paczynski
[103] as the results of gravitational lensing, and soon after confirmed by the
redshift measurement of the arc in Abell 370 ( [135], Fig. 1). The giant arc
discovery was revealing the strong lensing regime, however it only represents
the tip of the iceberg! In 1990, Antony Tyson, who was conducting deep CCD
imaging of clusters, identified a systematic alignment of faint galaxies around
cluster cores. He then suggested that this alignment, produced by the cluster
lensing distortion, could be used to map dark matter in clusters. These two
discoveries opened up a new field in astronomy, the study of “cluster lenses”,
and stroke the theoretical community who produced in the first half of the
1990’s a large number of related papers related.

It is important to underline that these discoveries were made possible by
the successful development of CCD imaging that produces deeper and sharper
optical images of the sky, as well as by deep spectroscopy – essential to measure
the spectrum of faint low-surface brightness galaxies. Another technological
revolution was in preparation at that time – the launch of the Hubble Space
Telescope (HST). HST impacted dramatically the cluster lensing research (and
particularly that related to strong lensing). Although launched in 1991, HST

Fig. 1. The galaxy cluster Abell 370 as observed in 1985 (left) with one of the
first CCD cameras, in which the first gravitationally lensed arc was later identified
[81, 134]. The right image show the Hubble image of Abell 370. Most of the bright
galaxies seen are cluster members at z = 0.375, whereas the arc, i.e. the highly
elongated feature, is the image of a galaxy at redshift z = 0.724 [135]. North is on
top, East to the left, field of view is roughly 40×60 arcsec2
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could not immediately provide high-quality images, as its unforeseen “myopia”
was blurring the faint images of distant galaxies, making them useless for
lensing purposes. With the implementation of COSTAR and the odd-shaped
WFPC2 camera, HST recovered all its image sharpness. It is not a surprise
that one of the first images to be released was the astonishing view of the
Cluster Lens Abell 2218.

During, the second part of the 1990’s the wide field imaging camera had
been developed (such as: UH8k followed by CFHT12k at CFHT, Suprime at
Subaru, and more recently the Megacam camera at CFHT) on large ground
based telescopes. These cameras are made from a mosaic of large format CCDs
(4k×2k) allowing one to cover large areas on the sky (from a quarter of a
square degree up to one square degree). The construction of these instruments
was strongly motivated by the detection of the weak lensing distortion of faint
galaxies produced by clusters and large scale structures. A number of results
on “cosmic” shear measurements have been obtained (e.g., [142]) as well as
the direct detection of galaxy clusters via weak lensing [144].

At the turn of the second millennium the new impact of cluster lens-
ing was probably the growing use of clusters, as a natural telescopes, to
study the infancy of the Universe, e.g., [36, 38, 104]. This became possi-
ble by using deep spectroscopy on 4 m and then 8–10m class telescopes to
probe the high redshift Universe, but also by making observations through
these natural telescopes at different wavelengths of the electromagnetic spec-
trum. In particular, the discoveries and study of the sub-millimeter galax-
ies using SCUBA at JCMT (see reviews: [11, 139] and references therein,
see also [13, 69, 71], the Caltech interferometer at Owens Valley [39, 40],
the IRAM interferometer [70, 102], and the Very Large Array (VLA) [138]
greatly benefited from the boost of gravitational lensing in cluster fields.
Similarly, observations of lensed galaxies in the mid-infrared with the ISO-
CAM mid-infrared camera on the ISO satellite, e.g., [4, 89], and now with
the Spitzer Observatory [34], have allowed us to push further the limits of
our knowledge on distant galaxies. Gravitational lensing has now been recog-
nized as a powerful technique to count the faintest galaxies in their different
classes (EROs: [130]; Lyman-α emitter at z ∼ 4–6: [53, 122]; Lyman-break
galaxies at z ∼ 6–10: [115]) as well as to study in details the most magnified
sources [34, 68, 105–107].

Recently, the implementation of the new Advanced Camera for Surveys
(ACS) on HST has provided some new observational advances in the study and
use of cluster lenses. These can be envisioned with the very deep ACS images
of Abell 1689 [17]. This color image revealed more than 30 faint multiple
image systems in the core of the cluster, leading to more than one hundred
lensed images. This increase in the number of multiple images and thus of
strong lensing constraints in the cluster core, allows us to in principle achieve
a better mass modeling and to effectively use strong lensing in clusters to
constrain the cosmology [49, 78, 136].



Cluster Lensing 217

This brief historical account of “cluster lens” research summarizes some
of the important scientific results gathered up to now, and demonstrates the
importance of cluster lensing in modern cosmology.

When necessary, I will adopt a flat world-model with a Hubble constant
H0 = 70km s−1 Mpc−1, a matter density parameter Ωm = 0.3 and a cosmo-
logical constant ΩΛ = 0.7.

3 Lensing Theory Useful in Cluster Lensing

3.1 General Description

Due to their large mass density, galaxy clusters (as well as galaxies) locally
deform the Space-Time (see Fig. 2). Therefore, the wave front of any light
coming from a distant source, passing through a galaxy cluster, will be dis-
torted and this happens regardless of its wavelength as the effect is purely
geometric. Moreover, for the most massive clusters the mass density in the
core is large enough to break the wave front coming from a distant source
into pieces, hence producing multiple images, which then usually form these
extraordinary gravitational giant arcs (the strong lensing domain). Distant
galaxies will thus appear distorted, magnified and tangentially aligned to-
ward the cluster center, and we usually call them arclets because of their
noticeable elongated shape. Note however that their shape is a combination
of the intrinsic shape and the distortion induced by the cluster. If the align-
ment between the observer, the cluster and the distant galaxies is less perfect
then the distortion induced by the cluster will be less important and will not

Optical Path

Wave Front

Multiple Images Area

Multiple
Images

Arclets

Weak Shear

Linear

Non-Linear

Observer                                            Cluster of Galaxies                  Background Galaxy

Fig. 2. Gravitational lensing in clusters: A simple representation of how gravita-
tional images are formed (see text for a complete description)



218 J.-P. Kneib

be immediately recognized – statistical methods are required – corresponding
to the weak regime domain. In this region, the observed shapes of galaxies
are dominated by their intrinsic ellipticity and they are also affected by the
geometrical distortion and the point spread function (PSF) of the camera and
telescope. Thus, only a careful analysis (correcting the observed images for
the non-lensing distortion) can reveal the weak lensing signal.

3.2 Gravitational Lens Equation

Before going to the mathematics of lensing, I will first recap the assumptions
needed to derive the lens equations. First, it is assumed that the “Cosmological
Principle” (the Universe is homogeneous and isotropic) is correct on large
scales. The scale to be considered is the one corresponding to the Gravitational
force: L ∼ c/

√
Gρ̄ ∼ 2 Gpc where c is the speed of light, G is the gravitational

constant and ρ̄ is the mean density of the Universe. The large scale distribution
of galaxies (as determined by surveys like 2dF and SDSS) and the Cosmic
Microwave Background (CMB) (as revealed by COBE and more recently by
WMAP) are in good agreement with the “Cosmological Principle”.

The metric of the homogeneous Universe is locally perturbed by dense
concentrations of mass such as stars, galaxies or clusters of galaxies. The
Schwarzschild solution gives the metric near a point mass, and it is easy to
generalize it for a stationary weak mass field (Φ � c2) to a continuous mass
distribution:

ds2 =
(

1 +
2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
dr2 , (1)

where Φ is the 3D gravitational potential of the mass distribution considered.
If we consider a simple configuration of a single thin deflector (Fig. 3),

the observer (O) will see the image (I) of the source (S) deflected by the lens
(L). The geometrical equation relating the position of the source, θS, to the

Π Π

α

θI

r

(O) θ (L)

D
D

(I)

(S)

L S

S

OL

OS

LSD

Fig. 3. A single deflector configuration, showing the different angles and distances
needed to express the lens equation
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position of the image, θI, depends on the deflection angle, α, and the angular
diameter distance, Dij , and reads:

θI = θS +
DLS

DOS
α . (2)

The value of α depends on the local perturbation of the mass on the space-
time. The path of a photon will follow a null geodesic, that is ds = 0. Hence
from (1), one can determine the travel time tT for a given path which is a
function of the angle α. By applying Fermat’s principle, which states that the
light path is the one with a stationary travel time: dtT /dθI = 0, we can derive
the value of α as a function of the local Newtonian potential:

α(θI) =
2
c2

DLS

DOS
∇θIφ

2D
N (θI) (3)

where φ2D
N is the Newtonian projected gravitational potential.

Combining (2) and (3), we thus derive the thin lens equation approxima-
tion (which holds for stars, galaxies and cluster of galaxies, e.g., Schneider,
Ehlers & Falco [118]):

θS = θI − 2E
c2

∇φ2D
N (θI) = θI − ∇ϕ(θI) , (4)

where we defined ϕ as the lensing potential – a lensing normalized version
of the Newtonian projected potential, and the distance ratio, E = DLS/DOS,
which depends on the redshift of the cluster zL and the background source
zS, as well as, but only weakly, on the cosmological parameter Ωm and ΩΛ.
The distance ratio E is also measuring the efficiency of a given lens at redshift
zL. Indeed E is an increasing function of the source redshift zS, meaning that
the larger the redshift the stronger the deflection and distortion. This can
be however slightly more complex in strong lensing regions. Note also that E
is independent of the Hubble constant, which means that lensing deflection
angles are independent of the value of H0.

In the real Universe, the mass is not distributed in planes, and we can some-
time have multiple deflectors situated at different redshifts. In these cases, a
more appropriate formalism should be used, where one puts the mass in differ-
ent lens planes, and the lensing is then calculated by adding up the different
deflections plane by plane. Note that this is generally a non-linear combina-
tion, although it can be linearized in the weak lensing regime. In the case of a
massive cluster of galaxies, the likelihood of having an important contribution
from a second lens plane is very small. So for this reason, I refer the reader
to the work of Kochanek & Apostolakis [72] and Moller & Blain [93].

3.3 Gravitational Lens Mapping

The lensing transformation can be seen as a mapping from Source plane to
Image plane, and the Hessian of this transformation – also called the mag-
nification matrix – relates (to the first order) a source element of the Image
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(dθI) to the Source plane (dθS) in the following way (written in Cartesian
and polar coordinates):

dθS

dθI
=A−1 =

(
1 − ∂xxϕ −∂xyϕ
−∂xyϕ 1 − ∂yyϕ

)
=
(

1 − ∂rrϕ −∂r

(
1
r∂θϕ

)
−∂r

(
1
r∂θϕ

)
1 − 1

r∂rϕ− 1
r2 ∂θθϕ

)

(5)

One generally calls this matrix the magnification matrix:

A−1 =
(

1 − κ− γ1 −γ2

−γ2 1 − κ + γ1

)
, (6)

where we have defined the convergence, κ = Δϕ/2 = Σ/2Σcrit, the shear
vector (also often noted as a complex), γ = (γ1, γ2), where:

γ1 = (∂yyϕ− ∂xxϕ)/2 , γ2 = ∂xyϕ . (7)

The term Σcrit is the lensing critical surface density and it is defined by:

Σcrit =
cH0

2πG
DOS

DLSDOL
, (8)

and scales like:

Σcrit � 0.14
(

H0

70 kms−1 Mpc−1

)(
DOS

DLSDOL

)
gcm−2 . (9)

Thus, for DOS/DLSDOL � 3, the critical lensing mass density is about 10−25

gcm−3 which is a few 1000 times larger than the critical density of the Uni-
verse, ρcrit, making massive cluster efficient lenses.

The magnification matrix is real and symmetric and therefore it can be
diagonalised and written in its principal axis as:

A−1 =
(

1 − κ + γ 0
0 1 − κ− γ

)
= (1−κ)

[(
1 0
0 1

)
+

γ

1 − κ

(
1 0
0 −1

)]
. (10)

From this equation we see that κ is controlling the isotropic deformation, and
that the reduced shear, g = γ

1−κ , is controlling the anisotropic deformation (for
a simple example see Fig. 4). The direction of the deformation (or equivalently
of the shear) can be written as:

tan 2θshear =
2∂xyϕ

∂yyϕ− ∂xxϕ
(11)

As the direction of the shear is a ratio of the lensing potential, the shear
direction θshear will be independent (modulus 90 degree) of the distance ratio
E = DLS/DOS, and thus it will be independent of the source redshift zS. Only
the intensity of the shear will change with the source redshift zS.
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Fig. 4. Local deformation of a regular grid and a circle for a constant value of κ
and γ over this region

3.4 Critical and Caustic Lines

The magnification μ is defined as the determinant of the magnification matrix
and can be expressed as a function of κ and γ as:

μ−1 = det(A−1) = (1 − κ)2 − γ2 . (12)

The magnification is infinite if one of the principal values of the magnification
matrix is equal to zero, which means that the reduced shear, g, is equal to 1
or −1. Thus, the locus in the image plane of infinite magnification defines two
closed lines that do not intersect (i.e., g can not be equal to 1 and −1 at the
same location) which are called the “critical lines”. Their corresponding lines
in the source plane are called “caustic lines”, and they are all closed lines,
but contrary to the critical lines, they can intersect each other. In general for
a simple mass distribution, we can distinguish two critical lines: the external
critical line where the deformations are tangential, and the internal critical
line where the deformations are radial.

For a circular mass distribution, the equation of the critical lines are sim-
ple, as the magnification matrix in polar coordinates reduces to:

A−1 =
(

1 − ∂rrϕ 0
0 1 − 1

r∂rϕ

)
. (13)

Thus both the critical and caustic lines (if they exists) are circles (see Fig. 5).
In fact, substituting the equation of the tangential critical line, r = ∂rϕ, into
the lensing equation to compute the caustic line, we find that the tangential
caustic line is always restricted to a single point (only true for a circular mass
distribution).

It is also relatively easy to demonstrate that for a well-behaved mass distri-
bution, the radial critical line is located within the tangential critical line [62].

It is important to notice that for a circular mass distribution, the projected
mass within a radius r can be written as
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(a)

(d) (e) (f)

(b) (c)

Fig. 5. Critical line (dashed) and caustics (solid) for different mass model types: (a)
singular isothermal circular mass distribution, where the radial critical line is the
central point, and the corresponding caustic line is at infinity, (b) singular isothermal
elliptical mass distribution, where the tangential caustic line is then an astroid, (c)
circular mass distribution with an inner slope shallower than the isothermal mass
distribution. In this case a radial critical curve appears, and both caustics are circles.
(d) same as (c) but for an elliptical mass distribution; the relative size of both caustic
lines will depend on the mass profile and the ellipticity of the mass distribution, (e)
bimodal mass distribution of two clumps similar to (d) with an equivalent mass,
and (f) bimodal distribution with different mass clumps

M(r) =
c2

4G
DOSDOL

DLS
r∂rϕ(r) = πΣcritr∂rϕ(r) . (14)

At the tangential critical radius we have rct = ∂rϕ(rct). Thus the mass within
the tangential critical radius (also called Einstein radius rE) is

M(rE) = πΣcritr
2
E , (15)

The critical surface density, Σcrit, corresponds thus to the mean surface density
within the Einstein radius. Thus the more concentrated the cluster the larger
the Einstein radius. For a given surface mass-density profile, the size of the
Einstein radius will depend on the redshifts of the lens and the source as
well as on cosmology. The most effective lens is placed at less than half the
source redshift.

It is important to note that the radial critical curve is defined as

∂rrϕ(r) = ∂r
M(r)

Σcritπr
= 1 , (16)
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and thus its location depends on the gradient of the mass profile at the location
of the radial critical line.

The above considerations are very important properties of lensing, which
suggest that one can measure, with the tangential critical curve, the absolute
mass distribution within a circular aperture once the redshift of the lens and
the redshift of the source are known, regardless of the exact mass profile of
the structure. Using the radial critical curve, the slope of the mass profile near
the cluster center can be measured.

In a general (non circular) case, the determination of the critical lines can
not be addressed analytically (except for certain simple elliptical mass profiles)
and thus one has to solve for them numerically. The above property, of linking
the total mass within the critical line to the area within the critical line, does
not hold exactly for a more general case, but it is still a good approximation
if the mass distribution is not too deviant from circular symmetry. Hence
identifying the characteristic sizes of the critical lines in an observed cluster
is the first step to measuring its central mass and concentration.

3.5 Multiple Images

Critical lines are virtual lines, and thus are not directly visible. What we
can identify, however, are multiple images that will straddle critical lines as
tangentially or radially distorted images. One often refers to tangential pairs
or radial pairs, which are simple configurations easy to recognize, but one
can have triplet, quadruplet, quintuplet or even more images coming from the
same source depending on the local complexity of the mass distribution.

The number of multiple images is the number of solutions of (4). It can
be shown easily, following the catastrophe theory, that each time one crosses
the caustic lines, in the source plane, two images are added. Thus for a non-
singular mass distribution [19] we expect to always have an odd number of
multiple images. However, some images could be much less magnified (or even
strongly de-magnified) to the point that they are not observable, making the
counting of multiple images not as easy as the simple catastrophe theory
predicts.

Multiple images have different symmetries which can be summarized by
2 signs. We have 4 possibilities: (+,+) which correspond to the symmetry of
the source; (+,−), (−,+) and (−,−). These symmetries however can only be
identified with sufficiently high resolution images, namely those delivered by
HST (see Fig. 19).

In order to produce multiple images, the cluster surface mass density needs
to reach or be larger than the critical density. The configuration of multiple
images tells us about the structure of the mass distribution. A cluster with one
dominant clump of mass will produce (see Fig. 6) fold, cusp or radial arcs (e.g.,
MS2137.3-2353: [37, 87]; AC114: [98]; A383: [129, 132]). A bimodal cluster can
produce straight arcs (e.g., Cl2236-04: [65]), triplets (A370: [10, 63]) or even
a triangular image. A very complex structure, with lots of massive haloes in
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(S) (I) (1)

(2) (3) (4)

(5) (6) (7)

(8) (9) (10)

Fig. 6. Multiple-image configuration for a simple elliptical mass distribution. The
panel (S) shows the caustic lines in the source plane, and panels 1–10 show the
source position relative to the caustic lines. The panel (I) shows the image of the
source without lensing. The panels (1)–(10) show the resulting lensed imaged for
the various source positions. Certain configurations are very typical of the lensing
effect, and are named as follows: radial arc (3), cusp arc (6), Einstein cross (8), fold
arc (10)
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the core, can produce a multiple image system with 7 or more images of the
same source (e.g., Cl2244-04, A2218 – Fig. 7). The idea is that each massive
halo can add 2 extra images to a simple configuration if that halo is well
positioned.

Multiple images can be identified by different properties. Originally, multi-
ple images have been recognized as the images forming the giant arcs (3 images
in the case of Abell 370, but only 2 images in the case of MS2137.3-2353 or
Cl2244-04). However, not every giant arc is made of multiple images, indeed
it is most likely that the northern giant arc in Abell 963 is only made of one
single image, and its southern arc is made of two or three arclet (single image)
at different redshifts.

Multiple images can be recognized in terms of their (mirror) symmetry.
In the case of the ‘E’ multiple image system in AC114, spectroscopy has
confirmed a point-like object as a distant quasar at z = 3.147 which, after
detailed investigation, turned out to be multiply lensed [20].

Moreover, as lensing is achromatic, multiple images can also be recognized
as having similar colors, or by being extremely bright at some particular
wavelength like in the sub-mm or in the mid-infrared.

Finally, the ultimate way to confirm a multiple image system is through
lens modeling. This can allow one, in principle, to test if a set of images, having
similar morphology and colors, can effectively be multiple images of the same
source. The lens model can then predict the location of counter-images and
predict the redshift of the multiply lensed source [63, 66].

!

2

3

4

5

6

7

Fig. 7. A spectacular case of multiple images in the cluster Abell 2218 seen in
a BRI HST image. The distant E/S0 galaxy at z=0.702 is lensed into a 7-image
configuration
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3.6 First Order Shape Deformation

Distant sources are only multiply-imaged in the central region of the cluster
where the surface mass density is sufficiently important. But every observed
galaxy image is deformed by the lensing effect whether it is in the strong or
weak regime region. To first order, one can approximate a galaxy by an object
with elliptical isophotes, and thus its shape and size could be defined in terms
of ellipticity, orientation and area enclosed by a boundary isophote.

However, the shapes of galaxies can be quite irregular (specially for late
types or irregular galaxies) and they are not well approximated by ellipses.
We thus need to express the shape of a galaxy in terms of its pixel surface
brightness, as measured by a digital detector. For this purpose, we will use the
moments of the light distribution to define the shape parameters. If I(x, y)
is the surface brightness distribution of the considered galaxy, we can define
the center of the image, θc=(xc, yc), using the first moment of the I(x, y)
distributions:

θc =
∫
W (I(θ))θdθ∫
W (I(θ))dθ

. (17)

Note that W (I) is a weight/window function that allows, in the case of real
noisy data, to have finite integrals. The simplest choice of the function W (I)
is the Heaviside step function H(I − Idetiso) which is equal to 1 for I(x, y) >
Idetiso, where Idetiso is the isophote limiting the detection of the object, and
0 otherwise. The center will then be the center of the detection isophote.
Another popular weight function is W (I) = I × H(I − Idetiso), where the
center is then weighted by the light distribution within the isophote.

The second order moment matrix of the light distribution, centered on
θc, is:

Mij =

∫
W (I(θ))(θI − θC

i )(θj − θC
j )dθ∫

W (I(θ))dθ
≡ Rθ

(
a2 0
0 b2

)
R−θ , (18)

allows one to define the size, the axis ratio and the orientation of the corre-
sponding ellipse. Indeed M is definite and positive and can be written in its
principal axes, where a and b are the semi major and semi minor axis and θ is
the position angle of the equivalent ellipse. Thus M can define the equivalent
galaxy ellipse parameters: size, ellipticity and orientation (for an example see
Fig. 8).

It is useful to define the equivalent complex ellipticity. Note that various
methods exist to define the norm of the complex ellipticity, and different
lensing studies have used a multitude of notations:

ε = χ =
a2 − b2

a2 + b2
τ =

a2 − b2

2ab
ε =

a− b

a + b
. (19)

However, ε has now become the standard definition, essentially because it is a
direct estimator of the reduced shear g (see below). The ellipticity parameters
are of course linked to each other by: ε = 2ε/(1 + ε2).
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Fig. 8. A typical faint galaxy observed on a CCD image (left), and the equivalent
ellipse defined from the second order moments (right)

Now that we have defined these different parameters, we need to express
how gravitational lensing transforms the shape of a galaxy. First it can be
showed [73, 90] that the image of the center of the source corresponds to the
center of the image in the case where the amplification matrix does not change
significantly across the size of the image (which can also be considered as the
definition of the weak lensing regime). To demonstrate this, one has to use
the fact that the surface brightness is conserved by gravitational lensing, as
demonstrated by Etherington in 1933, i.e., I(θI) = I(θS).

The lens mapping will transform the shape of the galaxy, by amplifying it
and stretching it along the shear direction. This transformation can be written
in terms of the moment matrix as:

MS = A−1 M I tA−1 . (20)

This equation allows one to express how the equivalent ellipse of the source
is mapped onto the equivalent ellipse of the image or vice versa.

If we consider the size, σ = a× b, of the equivalent ellipse, we can write:

σ2
S = detMS = detM I .(detA−1)2 = σ2

I .μ
−2 (21)

The size σS of the source is thus amplified by the magnification factor μ.
For the complex ellipticity ε we have:

εS =
εI − g

1 − gεI
, for |g| < 1 , (22)

which corresponds to the region external to the critical lines, and

εS =
1 − g∗ε∗I
ε∗I − g∗

, for |g| > 1 , (23)
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which corresponds to the region internal to the critical lines (the ∗ denotes
the transpose notation of a complex number).

In the weak regime, where the distortions are small (|g| � 1), the lensing
equation simplifies to:

εI = εS + g∗ . (24)

Thus the ellipticity of the image is just a linear sum of the source ellipticity
and the lensing distortion. Averaging the above equation over a number of N
sources means that the averaged image ellipticities is a direct measure of the
reduced shear, g, provided that the orientation of sources are random and not
correlated:

〈εI〉 = 〈g∗〉 , σεI ∼ σg ∼ σεS/
√
N . (25)

The error on the measurement is directly proportional to the rms source el-
lipticity divided by the square root of the number of sources used. Obser-
vationally, for typical cluster data, we have σεS = 0.3, which then directly
gives the order of sources needed to reach the desired accuracy on 〈g〉. Note
that in practice we need also to take into account the errors on the shape
measurements.

3.7 Higher Order Shape Deformation – “Flexion”

The equation of the previous section assumes that κ and γ (and thus the
reduced shear g) are constant across an image. This assumption will, however,
fail when an image is large and/or when it is close to critical regions, where
the lensing distortion is rapidly changing. To simplify the situation, there are
two main effects that lensing will produce on an elliptical source: a shift of
the flux peak center, compared to the center of the fainter isophotes, and the
transformation of the elliptical shape into a “banana” shape.

To determine these transformations numerically one needs to go to higher
orders of the lensing transformation using a Taylor’s expansion of the image
shape. This was first investigated by Goldberg & Natarajan [48], and recently
formalized and summarized in two papers [5, 47]. A parallel development of
high-order lensing shape deformation, based on the beam-physics formalism,
has been recently presented by Irwin & Shmakova [54] which merits to be
looked at in detail.

Similarly, the observed flexion will be a combination of the intrinsic flexion
(assumed on averaged to be random), the lensing flexion, and the flexion
introduced by the telescope/camera. Hence measuring the flexion, correcting
for instrumental flexion and averaging it, will lead to a measurement of the
lensing flexion. Thus the flexion can usefully complement shear estimators
and this is particularly true in the intermediate regime, between the classical
strong and weak regimes.

Although not yet applied to cluster lensing, this formalism could in prin-
ciple be applied to cluster lens modeling by adding further constraints.
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4 Constraining the Cluster Mass Distribution

Gravitational lensing, as we have just seen, is a clean way to probe the mass
distribution of clusters, regardless of the nature of the matter particles. How-
ever comparing lensing estimates to other mass estimates is an excellent way
to probe the amount, nature and distribution of dark matter particles, as well
as to investigate cluster physics. Strong lensing can only be observed in the
core region (<∼ 1 arcmin) of the most massive clusters and much can be
learned about the detailed mass distribution in these regions. Weak lensing
can only be observed on scales where enough faint galaxies can be averaged
to locally measure the reduced shear, typically on scales larger than those of
strong lensing (∼> 1 arcmin).

4.1 Strong Lensing

A particular useful and simple mass estimate in the strong lensing regime is
the mass within the Einstein radius, RE: M(< RE) = πΣcritθ

2
E, where RE

is the location of the critical line for a circular mass distribution, usually
approximated by the arc radius Rarc. It is a very handy expression, but one
should be careful in using it, either because the arc used to derive the mass is
at an unknown redshift, or the arc is a single image and thus does not trace
the Einstein radius (for a singular isothermal sphere model, a single image
can not be closer than twice the Einstein radius or it will have a counter
image!), or even because the mass distribution could very complex with a
lot of sub-structure. In conclusion, this estimator generally overestimates the
mass.

The radial critical line can be constrained when a radial arc is observed
in the cluster core. This has been the case in a number of cluster lenses [37,
41, 120, 121, 129]. These features are important as they lie very close to the
cluster core, and thus provide a unique way to probe the central mass surface
density, from which we can directly probe the Dark Matter slope in the cluster
core.

The only route to accurately constrain the mass in cluster cores is to use
multiple images, with spectroscopic redshifts, to absolutely calibrate the mass.
As the problem is generally degenerate –in the sense that there is not a sin-
gle mass distribution but a family of models that fit the observables, the best
way is to use physically motivated representations of the mass distribution
and adjust these in order to best reproduce the different families of multiple
images, e.g., [66, 129]. As the position of the images are known to great accu-
racy, and are usually located in different places of the cluster cores, a simple
mass model with one clump usually cannot reproduce the image configura-
tion. The lens model needs to include the cluster galaxies to match-up the
image configurations and positions. Since there is not an infinite number of
multiple images, the number of constraints is limited. It is therefore important
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to limit the number of free parameters of the model and keep it physically mo-
tivated. An alternative method, using a non-parametric description, has been
explored by Abdelsalam et al. [2], and more recently by Diego et al. [31] who
described in great details different possible approaches to the non-parametric
problem. However, such methods usually lack the high resolution of a para-
metric form which is needed due to the large dynamical range of the cluster
core mass-density.

The strong lensing-mass modeling technique can be seen as an iterative
method, in the sense that once a multiple image is securely identified, other
multiple image systems can be discovered using morphological/color/redshift-
photometric criteria as well as the predictions from the lens model. The lens
model can then predict redshifts for these multiple systems [36, 63, 98] as well
as for the arclets [64, 66]; on the basis that, on average, a distant galaxy is ran-
domly orientated, and its ellipticity follow a relatively peaked ellipticity dis-
tribution. These predictions can then be tested/verified [35] and an improved
mass-model can be derived including the new constraints. The Lenstool
software [62], that performs parametric strong-lensing modeling, is publicly
available at: http://www.oamp.fr/cosmology/lenstool/.

4.2 Probing the Radial Profile of the Mass in Cluster Cores

One important prediction from dark matter only numerical simulations is the
value of the slope of the density profile in the central part of relaxed grav-
itational systems. Although there is still some debate on the exact value of
the inner slope [88, 94, 101], the real limitation in such numerical predictions
is probably the lack of baryonic matter (both stars and gas). Cosmological
simulations that include gas dynamics, radiative cooling and star formation
(e.g., [46]) are currently limited by the poorly constrained physical processes
acting in the cluster core, and are not able to give a unique prediction. Nev-
ertheless, the radial slope of the total mass-profile is a quantity that lensing
observations can constrain. The first attempt of this endeavor was conducted
by Smith et al. [129] who characterized the inner slope of the total mass-profile
in the Abell 383 cluster by modeling (using both a radial and tangential arcs)
the cluster core by a sum of a cD halo and a cluster clump halo.

Once tangential and radial arcs have been identified on the HST images,
the main observational limitation is to measure the redshift of both multiple
arcs to firmly constrain the radial mass-profile (see Fig. 9). Large telescopes
(Keck/VLT/Gemini/Subaru) are powerful instruments to measure the red-
shifts of faint galaxies. Thus these telescopes are now playing a key role in
cluster lensing, used to measure redshifts of multiple images. Furthermore,
working at high spectral resolution with large telescopes allows us to probe the
dynamics of cD galaxies [120, 121]. Thus, combining the stellar dynamics con-
straints and the lensing constraints on the mass distribution of cluster cores,
makes it possible to weigh the different mass components. Sand et al. [120]
first investigated this technique on the cluster MS2137.3-2353 (z = 0.313),
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Fig. 9. (Top) WFPC2 image of the core of the cluster A383 [129] which shows
both a radial and tangential arc. The first constrain of the slope of the total matter
in a cluster core was derived from this analysis. (Bottom) A recent discovery of a
radial arc in the cluster MACSJ1133.2+5008 [121]. In this system, both the radial
and tangential arcs are from the same source

where they measured the redshift of both the radial and tangential arc at
z ∼ 1.5, as well as the velocity dispersion of the central cD. A similar anal-
ysis was conducted by Gavazzi et al. [41] and on a larger cluster sample, by
Sand et al. [121]. The conclusion is that the dark matter slope is shallower
than the one predicted by NFW (β = 0.5± 0.3), but the comparison between
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numerical simulations and observations is not direct as the stars of the cD
galaxies dominate the total cluster mass in the very center (with a possible
contribution of the X-ray gas).Thus they do not follow the simple DM physical
processes of numerical simulations.

It is also most likely that combined constraints of strong lensing and high
resolution images of cluster cores, in X-rays using Chandra and/or XMM-
Newton, will help understand the mass distribution in the inner core and
the physical processes present, specially for the most relaxed clusters. Clearly,
more work is needed to be done in this direction, as X-ray and lensing analyses
are currently conducted separately.

4.3 Weak Lensing

As soon as we look a little bit further away from the highest density region,
the lensing distortion (and magnification) gets smaller, and very quickly the
shape of faint galaxies are dominated by their intrinsic ellipticities. Thus, in
the weak lensing regime the game is very different than in strong lensing where
any multiple images will put strong constraints on the mass distribution. Here,
we need to measure the mean ellipticity or the mean number density of faint
galaxies (if the idea is to use the magnification effect), in order to relate these
statistics to the mean surface mass-density κ of the cluster.

There are two problems in measuring mass from weak lensing:

• for observers: How to best determine the “true” ellipticity of a faint galaxy
which is smeared by a PSF barely smaller than the object (when using
ground-based images) which is not circular (camera distortion, focusing,
tracking errors ...) and which is not stable in time? How to best estimate
the variation in the number density of faint galaxies due to lensing, taking
into account the crowding effect due to the cluster and the intrinsic spatial
fluctuations in the distribution of galaxies?

• for theorists: What is the best way to reconstruct the mass distribution κ
(as a mass map or a radial mass profile) from the “reduced shear field” g
and/or the magnification bias?

Various approaches have been proposed to solve these two problems, and
two families of methods can be distinguished: direct and inverse methods.

For the observer, before any data-handling, the first priority is to choose
the telescope that will minimize the source of noise in the determination of the
ellipticity of faint galaxies. Although HST has the best characteristics in terms
of the PSF, it has a very limited field of view, and it is not really appropriate
to probe the large-scale distribution of a cluster. Wide-field ground-based
imagers are much more appropriate in terms of field of view covered, but are
lacking the crisp image resolution of HST .

Ultimately, what would be really needed is a wide field imager with excel-
lent image resolution and PSF stability: the SNAP satellite concept is match-
ing well the requirements for a (weak) lensing telescope of the future [85, 114].
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Once the data have been taken with the best care to minimize the dis-
tortion and with, hopefully, the best seeing conditions, the next step is to
convert the images of faint galaxies into some valuable lensing constraints.
For this, we can use a direct approach, using for example the Kaiser, Squires
& Broadhurst [58] method [KSB implemented in the imcat software], or any
other improvement of it [59, 80, 113] that relates the true ellipticity, to the
observed ellipticity correcting it from the smearing of an elliptical PSF (using
the second moments of the galaxy and the PSF). Alternatively, one can use the
inverse approach, based on the maximum likelihood or the Bayesian method,
to find the shape of the source galaxy which, when convolved by the estimated
local PSF, reproduces best the observed galaxy (e.g., [76], Im2Shape: [16]).
These inverse approaches have the advantage of providing directly an un-
certainty in the parameter recovery, as illustrated in Fig. 10. Furthermore
the extension of this technique, in particular including the Shapelet tech-
niques [9, 86, 109, 110], may become the standard weak lensing measurement
method in the next decade.

To understand more about the different measurement techniques and how
they compare, the STEP (Shear TEsting Program) initiative has brought
together a number of techniques developed and applied by different people to
evaluate, on simulated images, the accuracy of the recovery of weak lensing
signals [50]. Note however that the shear measurements are not only the ability
of measuring the shapes of galaxies but also: (i) to clean the galaxy catalogue
used to measure shear from faint stars, spurious objects or ill-defined shape
objects (such as mergers) that will reduce the accuracy of shear measurements;
(ii) to select galaxies in redshift-space to minimize foreground and cluster
contamination in the shear signal.

From this lensing catalogue (containing information such as position on the
sky, shape and redshift information with errors) a mass map can be derived.
Again a direct and an inverse approach are possible.

The direct approaches are: (i) the Kaiser & Squires [56] method (an in-
tegral method, that express κ as the convolution of γ by a kernel) and subse-
quent refinements, e.g., [123–126]; (ii) the local inversion method [57, 79, 117,
128], that integrates the gradient of γ within the boundary of the observed
field to then derive κ.

The inverse approach works on either κ or the lensing potential ϕ, and
uses maximum likelihood [8, 61, 119], maximum entropy [15, 82, 127] or atomic
inference approaches, coupled with MCMC optimization techniques [84], to
determine the most likely mass distribution (as a 2D mass map or a 1D
mass profile) that best match the reduced shear signal g in the lensing cata-
logue, and/or the variation in the faint galaxy number densities. These inverse
methods are of great interest as they allow us to quantify the errors in the
resultant mass maps or mass estimates [15, 67, 82], and in principle to cope
with external constraints (such as strong lensing, X-ray, galaxy dynamics or
SZ measurements).
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An important issue is to which resolution a 2D lensing mass map can be
reconstructed. Generally, mass maps are reconstructed on a fixed size grid,
which then defines the minimum mass resolution that can be obtained. By
comparing the likelihood of the different resolution mass maps, we can then
calculate to with which resolution the mass map is best estimated (Fig. 11).
However, it is most likely that the best scale to which a mass map is to
be reconstructed has to adapt itself according to the strength of the lensing
signal. As we are limited by the intrinsic ellipticity distribution, it is only by
averaging a large number of galaxies that we can reach the 1% shear level.
Such low shear levels can thus only be probed on relatively large scales or by
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radially averaging a large number of galaxies. Furthermore, as the projected
cluster mass distribution on large scales falls off relatively slowly (1/R – 1/R2

respectively for an SIS or a NFW profile), it means that cluster masses have
a contribution on large scales. It is likely that the best methods to accurately
model the cluster mass distribution, on large scales, is probably by using para-
metric methods (allowing, sufficient freedom in the radial profile and number
of substructures to closely map the observed lensing distortions).

The main output of weak lensing measurements in clusters are generally:
(i) the detection of mass peaks, (ii) the measurement of the mass profile and
total mass.

Although the lensing-mass peaks in clusters are usually centred on the
optical and X-ray centers, in rare cases they point to different positions. For
example, in the case of the merging cluster 1E0657-558 [25], the two lensing
mass clumps are significantly offset compared to the X-ray surface bright-
ness peak, leading to the conclusion that a large amount of dark matter is
needed in this system, regardless of the nature of the gravitational force. The
merging cluster 1E0657-558, is probably today the cleanest and unambiguous
astrophysical proof for the existence of DM in a cluster.

In wide-field imaging surveys, cluster weak lensing techniques are applied
to find clusters directly, irrespective of the galaxy concentration or X-ray
detection. Important current surveys are the Deep Lens Survey [145], the
Subaru survey [92], the CFHT Legacy Survey. The ultimate aim is to use
cluster lensing counts to probe cosmology and particularly dark matter and
dark energy. These will however only be possible with the future dedicated
Dark Energy surveys such as DES, and the future novel telescopes, LSST and
SNAP.

The weak-shear mass reconstruction techniques have been applied to
ground based wide-field camera data (UH8k, CFH12k, ESO-WFI, CTIO-
MegaCam) as well as multi-pointing HST data. Impressive results have been
published for medium redshift (z ∼ 0.2 − 0.3) clusters [6, 23, 24, 30] and for
low (z < 0.1) redshift clusters [55]. For high (z > 0.5) redshift clusters, large
aperture telescope [22] or HST [51, 52, 67] are probably more adequate.

Regarding the determination of the total cluster mass and its profile, weak
lensing measurements are plagued by contamination of cluster galaxies in the
central part, where the shear profile is generally underestimated. Total masses
are less affected, unless the field of view of the camera is limited, in which
case the mass-sheet degeneracy can be important. Using color selection to
remove cluster contamination, using wide-field cameras or mosaiced images,
and combining the weak and strong lensing constraints, can allow one to work
around these different issues.

4.4 Haloes of Cluster Galaxies

We know that galaxies are massive and that their stellar content represents
only a small part of their total mass. Although the existence of dark haloes
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around disk galaxies was obvious from very early on, with the study of their
flat velocity curve out to large radius (e.g. [141]), the existence of elliptical
galaxy dark haloes has been accepted only relatively recently, e.g., [74, 116].
These studies have found that the stellar content dominates the central part
of the galaxies, but at distances larger than the effective radius the dark halo
dominates the total mass. What is less obvious in cluster of galaxies, is how
far the galaxy dark haloes extends, as one expects some tidal stripping of the
galaxy dark haloes as they pass through the cluster cores. Furthermore, we
would ideally like to relate the strong morphological evolution, observed in
cluster galaxies, e.g., [75, 140], to their mass properties.

Galaxy lensing effects were first clearly detected in clusters by Kassiola et
al. [60] who noted that the lengths of the triple arc in Cl0024+1654 could only
be explained if the galaxies near the B image were massive enough. Detailed
treatment of the galaxy contribution to the cluster mass became critical with
the refurbishment of HST, as first shown by Kneib et al. [66] who concluded
that galaxies (and their dark haloes) in cluster cores contributes ∼10% of the
total cluster mass. The theory of what is usually called galaxy-galaxy lensing
in clusters was first discussed in detail by Natarajan & Kneib [97], and the
first application to clusters followed shortly [42, 43, 98]. A recent analysis
of this effect in various cluster-lenses at different redshifts seems to indicate
an increase of the dark halo size of cluster ellipticals with increasing local
mass density [99, 100]. Clearly more work is to be done in this direction, in
particular addressing the variation of the galaxy halo size as a function of
distance to the cluster center [77]. Note, that lensing appears here as the best
method to probe such an effect, and the next step in attempting to improve
such measurement is to analyze an even larger number of cluster galaxies,
and combine those with velocity dispersion measurements of cluster galaxies
involved in the lensing distortion.

It is important to realize, that the standard direct weak shear methods
miss the small scale fluctuations (typically of galaxy halo scales) because of
the averaging of the galaxy ellipticities. Thus, only dedicated methods can
probe this effect in the weak shear method. The only practical route are the
inverse approaches, using parametric mass models for cluster galaxies and the
unbinned lensing catalogue (e.g., [98]).

4.5 Strong Plus Weak Lensing Cluster Modeling

A number of recent developments have shown the importance of combining
strong and weak lensing to constrain the mass distribution in clusters [14, 67].
Indeed, strong and weak constraints can be combined together in a very
complementary fashion, since strong lensing addresses the detailed and ab-
solute mass distribution in cluster cores, while weak lensing probes more the
large scale distribution. Putting both constraints together, lead to strong con-
straints on the mass profile on large scale.
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Fig. 12. The 39 WFPC2/F814W, and the 38 STIS/50CCD pointings, sparsely cov-
ering the Cl0024+1654 cluster. The (red) dashed contours represent the number
density of cluster members as derived by Czoske et al. [28] . The (blue) solid con-
tour is the mass map built from the joint WFPC2/STIS analysis derived using the
LensEnt software [15, 82]

For example, important results have been obtained on the high redshift
cluster Cl0024+1654, using 39 WFPC2/F814W pointings sparsely distributed
around the cluster center, as shown in Fig. 12. By measuring the weak lensing
distortion out to ∼ 5 Mpc and by taking into account the strong lensing con-
straints (a 5-image multiple image system at redshift 1.675). Kneib et al. [67]
found a close correlation between the lensing mass distribution and the light
distribution (Fig. 13). Furthermore, a clear substructure is detected in the
2D-mass reconstruction, of which the M/L ratio is similar to the main cluster
clump. Finally, the fit of the radial mass profile (using both weak and strong
lensing constraints) rejects, with high confidence, a SIS model but favors a
cored-power-law model or a NFW model.
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Similar results have been published for the clusters: MS2137.3-2353 [41]
and Abell 1689 [18]. All three analyses discussed above find a much higher
concentration for the NFW parameterization than the one found in (dark mat-
ter only) numerically simulated clusters. The origin of this high concentration
may be explained by:

• projection effects along the line of sight: if the cluster under study is elon-
gated along the line of sight, probably linked to an observational bias
in the cluster selection. However, this is not likely to be the case for
MS2137.3-2353 which is X-ray selected.

• an earlier cluster formation than the one assumed in the numerical sim-
ulation, as the concentration parameter increases with the age of the
structure.

• the lack of baryons in simulations, missing some important dynamical
effects (ram pressure, baryon/dark-matter interaction), that may impact
the distribution of matter in cluster cores.

• DM particles being self-interacting thus changing the mass profile partic-
ularly in the highest density regions.

These different possibilities clearly need to be checked with larger cluster
samples in order to better appreciate each of them.
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4.6 Mass Distribution of Cluster Samples

Although the individual modeling of cluster cores is of great importance in
order to characterize the best fitting mass distribution model (see previous
sections), a lot can be learned by conducting statistical analyses of well defined
cluster samples. The aim of such studies is to characterize the cluster lensing
mass distribution and compare these results to other measured physical prop-
erties, like the X-ray temperature, the X-ray luminosity, the velocity dispersion
of cluster galaxies as well as the measured SZ decrement. Understanding the
different scaling relations between the various parameters should allow us to
better understand clusters physics and dynamics. What is the repartition of
mass between the different components. Are clusters relaxed? How important
is substructure? How triaxial are the clusters? How many mergers occurred in
a cluster? How important are projection effects? What was the evolutionary
history of clusters? When did they first form?

To answer these questions, only statistical approaches are possible, and
they should be based on a comprehensive multi-wavelength dataset, while
ideally they should cover the various cluster scales. Collecting such a dataset
is a huge challenge as it needs very broad skills and thus should involve a large
number of people. First steps in this direction are now starting to produce
interesting results, as shown by Dahle et al. [30] and Smith et al. [132, 133].
Many more results will follow based on data already collected, and on future
data.

As an example of such developments, we started a thorough analysis of
a sample of 12 z ∼ 0.2 X-ray luminous clusters of galaxies selected from
the XBACS catalog (see Fig. 14). These clusters have been imaged with the
WFPC2 camera [132, 133]. Most of these clusters have been observed with
the wide field CFHT12k camera in 3 colors (BRI) in order to probe the wide
field mass distribution of these clusters.

This cluster sample has also been observed with the two X-ray satellites
Chandra and XMM-Newton. A simple comparison of the derived lensing mass
estimates of the cluster core and the Chandra X-ray temperature shows a
somewhat loose correlation between mass and X-ray temperature [133]. How-
ever, by splitting the clusters into two samples, relaxed and un-relaxed clus-
ters, a better picture of the M–T relation seems to arise and favors a low value
for σ8 (Fig. 15). But considering the various possible biases and uncertain-
ties, it is clear that this first analysis needs to be improved by looking at a
larger cluster set, with possibly a view on the 3D distribution. As an example,
this can be acquired from the measurement of a large number of velocities of
cluster galaxies (see [28, 29]) and by taking into account the weak lensing
measurements that probe the mass on larger scales.

Cypriano et al. [27] have also conducted a weak lensing analysis on a much
larger cluster sample using VLT/FORS and Gemini/GMOS. The idea is to
extensively image the XBACS/BCS cluster sample searching for lensing ef-
fects in these clusters (see the Abell 2029 analysis – Fig. 16). At this time only
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Fig. 14. Three of the 12 z ∼ 0.2 X-ray luminous clusters of galaxies selected from
the XBACS catalog [32] observed with the HST/WFPC2 camera. Top row is Abell
68, second row is Abell 209 and last row Abell 267. First column is the weak shear
field, second column is a zoom on the cluster core, third column is the lensing mass
reconstruction and last column is the overlay of the Chandra X-ray map [132]

half of the targeted clusters have been published (24 out of the 50 at VLT).
Nevertheless, the interesting results [27] show a clear correlation between lens-
ing mass and X-ray temperature, except for the most massive/X-ray luminous
clusters, for which the clean correlation breaks (likely due to merger activity
that temporally boost or decrease the X-ray signal, as well as affecting the
lensing measurements depending on the projection angle).

4.7 New and Larger Cluster Samples – Looking for New Lenses

Understanding lensing clusters will be possible only if more observations are
accumulated, but also if more clusters can be detected and studied. The num-
ber of published massive clusters, for which lensing analysis can be conducted
on, is relatively limited (probably much less than one hundred). This, how-
ever, is beginning to change slowly – but the most massive clusters are in any
case very rare – hence only sensitive enough surveys, covering a large fraction
of sky will allow us to probe such clusters.
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There are different strategies to find massive clusters, and each technique
has its advantages and weaknesses. One could list four techniques that are
being, or will be, used to search for clusters in the near future:
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• Photometric searches in wide field surveys, like the SDSS, the Red Clus-
ter Sequence survey (Fig. 17), the CFHT Legacy Survey (CFHTLS), the
DPOS survey.

• Weak lensing searches: the CFHTLS wide survey, the Deep Lens Survey
[144, 145].

• SZ searches: based on the AMI and AMIBA projects, the bolometer array
to be installed on the APEX antenna and in a more distant future on the
Planck mission.

• X-ray selected cluster searches: in particular the MAssive Cluster Survey
(MACS) [33] which is to-date the only survey capable to detect a large
number of the most massive clusters at z > 0.3 (Figs. 17, 18), and other
surveys like: REFLEX, WARPS, SHARC and XMM-LSS.

These surveys will produce a larger catalog of clusters, particularly at
redshifts z∼> 0.3. Those dedicated lensing studies will enable us to more closely
investigate their mass distribution, as well as reveal, from time to time, very
efficient lenses that can be used for other purposes, like studying the distant
Universe thanks to the gravitational magnification effect.

4.8 Lensing and Other Mass Estimators

Gravitational lensing allow us to measure the total mass distribution of clus-
ters without making any assumption on the cluster physical state. Other esti-
mators always require some assumption when trying to relate the observables
to the total mass. Generally these assumptions look reasonable but may suffer
strong biases due to the unknown physical state of the clusters. By provid-
ing the total mass, lensing does constitute a key tool to understand cluster
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Fig. 17. Examples of newly found high redshift clusters. (Left) The cluster
MACS0717.5+3745 as observed by Chandra, showing a very extended X-ray emis-
sion following the very extended distribution of red galaxies. (Right) A very com-
pact cluster detected in the RCS survey [44] showing prominent arcs, one of them
at a redshift of 4.8
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physics. It is probably best then to first derive the total lensing mass using
lensing, and then from other observations derive various physical cluster prop-
erties, like the cluster dynamical state using galaxy velocities [96], the X-ray
gas temperature profile [108] and the baryon fraction or the equilibrium status
of the cluster. Lensing mass estimates, however, have also their limitations (in
particular due to line of sight projection effects).

The ultimate way is to compare the different mass estimators in a joint
analysis (e.g., a joint analysis of lensing and SZ observations of clusters [83]).
As an example, X-ray mass estimates generally differ sensibly from the
strong/weak lensing estimates – although not always. The differences could
be due to different reasons, depending on the cluster studied (e.g., [91]): (i)
projection effects: 2 clusters can be aligned along the line of sight and boost
the lensing mass; (ii) simple X-ray modeling: for example a multi-phase gas
distribution is necessary in cooling flow clusters (e.g., [3]); (iii) non-thermal
effects can modify the central mass estimates; (iv) the clusters may have
just suffered a major merger event and the dynamical state of the gas can
not be considered as being in thermal equilibrium. Another important issue
that can affect the X-ray mass estimate is the exact form of the total mass
profile (generally assumed to be an isothermal sphere or to follow a NFW
form).

The canonical lensing clusters Cl0024+1654 is one example where the X-
ray mass and lensing mass do not agree. In this cluster, the X-ray emission is
weak compared to the large Einstein ring observed. The recent redshift survey
of ∼300 cluster galaxies [28, 29] and the recent lensing analysis [67] reveals
that this system is very complex, showing different substructures, indicating
that this cluster is certainly not yet fully relaxed. Simple X-ray estimates
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give a factor of 3 between the observed lensing mass and the one derived
from X-ray data alone. A proper 3D model of this cluster and its X-ray gas
may solve the discrepancy and allow a better understanding of its dynamical
status.

The Sunyaev-Zel’dovich (SZ) effect is now routinely measured towards the
most X-ray luminous clusters [21]. As the SZ is probing the intra-cluster gas
in a different way than X-ray observations, it is important to use SZ as a com-
plementary approach to the lensing, X-ray and galaxy velocities estimators,
since a detailed comparison could teach us a lot about cluster physics.

5 Clusters Lenses as Natural Telescopes

Cluster lenses magnify and distort the galaxies behind them. For efficient
lenses (massive clusters with intermediate redshift, z ∼ 0.2− 0.4), the magni-
fication factor for the faint galaxy population is typically ∼ 2 for a few square
arc-minutes. This gain would correspond to a factor ∼ 1.5 in the diameter of
a telescope or an increase of a factor ∼ 4 in exposure time. Clearly, looking
through cluster lenses can yield great rewards when studying the faint (and
thus distant) galaxy population, as it allows us to observe intrinsically fainter
objects than would otherwise be possible.
Cluster lenses magnify, but also distort, the shape of distant galaxies; the
further the sources, the stronger the distortions. Hence the shape of a lensed
galaxy, and whether it is multiple or not, is generally a good distance indicator.

Of course, the most interesting regions are those having the largest magni-
fication (also called the critical line regions). As the magnification is indepen-
dent of wavelength, the benefit of using cluster lenses as natural telescopes
has been used from X-ray to radio wavelengths, e.g., [4, 89, 137]. It was first
investigated in the optical/NIR domain, where a number of the most distant
galaxies (at their time of discovery) were found in the cluster magnified re-
gions, e.g., [36, 38, 53, 68, 105, 146]. There are two interests here: to discover
the most distant objects, and to study the morphology which otherwise would
not have been possible (Fig. 19).

Lensing has been beneficially used in the searches of EROs in a sample
of 10 X-ray luminous galaxy clusters [130, 131], where about 60 EROs were
identified allowing to compute the ERO counts down to a very faint limit.
It has also permitted the study, with more accuracy, of the morphology of
these peculiar galaxies, revealing in some cases, a spectacular disky component
(Fig. 19).

One of the exiting current focuses, is to map the critical region searching for
Lyman-alpha emitters at very large redshift (z > 7), in order to compute their
number density and luminosity function. One hope is to discover a population
III galaxy, which will allow us to put strong constraints on galaxy formation
in the early Universe, as well as determine the epoch of re-ionization. First
results of this systematic search found a lensed pair at z = 5.58 [36], and a
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P1

P2

Fig. 19. (Left) The lensed pair P1–P2 in AC114. This galaxy at redshift 1.67
display a surprising morphology, similar to a hook, in this HST/WFPC2 R-band
observation. (Right) The triple ERO galaxy in the core of Abell 68 at redshift
z ∼1.6. The large magnification allows to detect the blue light coming from the disk
of that galaxy [131]

detailed description of a sample of lensed Lyman-alpha emitters were then
obtained allowing to determine their luminosity function for 4 < z < 6 [122].
With the development of 3D – integral field unit spectrograph – such like
the VIMOS/IFU instrument, it is now becoming possible to study these high
magnification region more systematically [26].

Other important searches are to conduct deep ACS z-band and ground
based JHK observations of these massive clusters to have a better knowledge
of the SED of those high redshift galaxies. Certainly, we will discover a (small)
number of I-band, z-band or J-band dropouts that should put to even larger
redshift the detection of the most distant object. We may however have to
wait for JWST and the ELTs in order to collect a large number of these very
high redshift systems.

6 Cosmological Constraints

The ultimate step of strong lensing modeling is to constrain the cosmological
parameters that enters into the lensing equations through the DLS/DOS term.
This can be undertaken, when a sufficient number of multiple images (> 3)
are identified in a cluster core, and for which spectroscopic information can
be obtained [49].

As shown by Golse et al. [49] a sample of three multiply imaged pairs
in a cluster is in principle sufficient to decrease the effect of uncertainties in
the cluster mass modeling to sufficiently low level and to provide interesting
constraints on Ωm. This has been recently attempted on the famous lensing
cluster Abell 2218 (see Fig. 7), but clearly this can be improved a lot by adding
more constrains to the mass model and by measuring the redshift of the other
multiple images identified in the core of Abell 2218, thanks to exquisite deep
multicolor HST data (the number of multiple images systems is of the order of
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seven). Thus, it is now reasonable to attempt to use cluster-lenses to constrain
not only the mass distribution but also the cosmological parameters Ωm and
ΩΛ, as numerical simulations suggest [45] (see Fig. 20).

To reach this goal, we need to improve as much as possible the constraints
on the mass distribution of the cluster. This could be done by 3 different
approaches: (1) determine the redshift of the multiple images not yet known
(2) measure the radial velocity dispersion profile of key elliptical galaxies, in
particular the cD galaxy (3) enlarge the number of cluster members and their
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velocity dispersion by extending current redshift surveys in this field (this will
allow to check/confirm any substructure in redshift space).

7 Future and Prospects

Since the discovery of giant arcs in the late 1980’s, gravitational lensing in
cluster of galaxies has become a powerful cosmological tool.

• We are now able to reconstruct the mass distribution in clusters in great
detail from the galaxy scale to the virial radius. The lensing mass esti-
mates are usefully compared to other mass estimators to provide critical
information on the cluster physics (from the largest cluster scales to galaxy
scales) on well defined cluster samples. This is allowing us to give a direct
proof of the existence of Dark Matter and hopefully will allow us to put
constraints on the nature of the dark matter in clusters.

• Wide field surveys of mass selected clusters, using lensing techniques, will
allow us to make a direct comparison to the analytic/numerical models of
the Universe and thus better understand the growth of structure and the
large scale distribution of mass. It will also confirm or not the existence of
dark lumps of mass, as well as determine how massive are the filaments be-
tween galaxy clusters. Ultimately it could provide a complementary probe
of Dark Energy.

• Multiple images in cluster cores are about to measure directly the cosmo-
logical parameters through an optical geometrical test of the curvature of
the Universe [136]. Although more spectroscopic and mass modeling are
needed, it is a very clean method to tackle this problem.

• Likewise, time dependent phenomena, like supernovae or AGNs fluctua-
tions, if observed behind well-known lensing clusters, may prove to be a
very accurate way to probe the Hubble constant on cosmological scales,
as it has been initiated using multiple quasars. However, the likelihood of
having multiple images of such transient phenomena is weak. The recently
found SDSS large separation quadruple quasar will certainly be one such
case to study in detail.

• Finally, massive clusters will always be the unique place to look at in order
to boost telescope and instrument sensitivities at all wavelength, to push
ahead the discoveries, to reach the faintest detection levels and explore in
detail the morphology of distant galaxies.

The understanding of cluster lenses has greatly improved in the last 20
years, and will continue to progress with the current and future planned in-
struments.
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104. Pelló, R., et al.: A&A 346, 359 (1999)
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1 Introduction

Rich clusters of galaxies contain extensive atmospheres of hot gas. Emission
from this gas in X-rays was one of the major discoveries of the first genera-
tion of X-ray telescopes. High-quality images and spectra of the X-rays from
clusters are now available from the Chandra and XMM-Newton satellites.

A second method of imaging these atmospheres is provided by the Sunyaev-
Zel’dovich (SZ) effect [35]. As the cosmic microwave background (CMB) ra-
diation propagates through a cluster of galaxies towards us, photons have a
small probability of being inverse-Compton scattered by electrons in the clus-
ter gas. Since the microwave background radiation has a temperature of about
2.7 K, while the gas in a cluster of galaxies may have a temperature as high as
108 K, scatterings tend to increase the photon energies, so causing a change
in the microwave background radiation intensity and spectrum towards the
cluster.

The power of the SZ effect comes about because the effect is caused by
scattering, rather than emission, and so scales with the density of the scatter-
ing electrons. A cluster of galaxies may therefore appear quite different in its
X-ray and SZ effect structures, and a comparison of those structures can pro-
vide interesting information on the physics of clusters and their atmospheres.

This introduction to the use of the SZ effect describes the underlying
physics of the thermal, kinematic, and other aspects of the effect (Sect. 2),
the techniques used for observing the small signal produced by the effect
(Sect. 3), the information on clusters of galaxies that can be obtained from
the data (Sect. 4), and the cosmological information available by such work
(Sect. 5), and then describes some of the coming generation of instruments
designed for detailed work on the SZ effect, to take us beyond the exploratory
phase of SZ effect science. More details about the effect can be found in
recent reviews by Rephaeli [33], Birkinshaw [4], and Carlstrom et al. [9], but
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progress on detecting and using SZ effects is currently rapid, and even the
present introduction will be out of date soon.

2 The Physics of the Sunyaev-Zel’dovich Effect

2.1 Inverse-Compton Scatterings

Inverse-Compton scattering is a process in which energetic electrons give up
energy to photons. In the electron rest frame it is a simple exercise to show
that an electron/photon scattering in which a photon is deflected by angle θ12

(in the rest frame of the electron before the encounter) changes the photon
energy from ε to ε′, where

ε′

ε
=
(

1 +
ε

mec2
(1−cosθ12)

)−1

. (1)

If the electrons scatter photons of the microwave background radiation, which
have a characteristic energy of less than an MeV, clearly ε � mec

2, and the
scattering is almost elastic in the electron rest frame.

In this (Thomson) limit, the photon energy as seen by the observer changes
only because of the change of photon direction in the scattering. If the direc-
tion cosines of the motion of the photon before and after collision, in the rest
frame of the electron, are μ and μ′, then the photon energy changes from ε to
ε′′ where

ε′′

ε
= es =

1 + βμ′

1−βμ
(2)

in the observer’s frame. Here β = ve/c is the dimensionless speed of the
electron, which is typically ∼ 0.1 for the electrons in a cluster of galaxies with
gas temperature ∼ 5 keV. Equation (2) defines the logarithmic energy shift
factor, s, which is often useful in performing integrations.

The probability that an inverse-Compton scattering causes a shift s is

P (s;β) =
∫

p(μ) dμφ(μ′;μ)
(

dμ′

ds

)
, (3)

where φ(μ′;μ) is the function

φ(μ′;μ) =
3
8

(
1 + μ2μ′2 +

1
2
(1−μ2)(1−μ′2)

)
(4)

and p(μ) is the probability of a scattering occurring at direction cosine μ,

p(μ) dμ =
(
2γ4(1−βμ)3

)−1
dμ . (5)

γ is the Lorentz factor of the electron.
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Fig. 1. The function P (s; β) for β = 0.01, 0.02, 0.05, 0.10, 0.20, and 0.50. P (s; β)
becomes increasingly asymmetric and broader as β increases, with P (s; β) > 0 for
|s| < ln ((1 + β)/(1 − β))

The function P (s;β) is shown in Fig. 1. It is narrow and symmetrical
in β at small β, but as β increases it broadens and develops a significant
asymmetry, with a preference to positive values of s, corresponding to energy
gains by the scattered photons. For 5 keV electrons the asymmetry is already
significant.

2.2 Thermal Sunyaev–Zel’dovich Effect

The thermal SZ effect results from the scattering of the microwave background
radiation by the thermal gas in a cluster of galaxies. To calculate this effect
we need to obtain the probability distribution for s from single scatterings by
electrons in gas at temperature Te, P1(s). We calculate P1 by integrating the
function P (s;β) over the distribution function of electron speeds.

P1(s) is shown for a population of electrons with temperature 5 keV in
Fig. 2. At higher temperatures the function becomes more asymmetric, with
a stronger tail at positive values of s, as relativistic effects become more im-
portant. By a temperature of 15 keV P1(s) is clearly asymmetric.

The specific intensity of the microwave background, I0(ν) at frequency ν,
is changed to
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Fig. 2. The function P1(s) for a population of electrons with temperature 5 keV.
The function is not symmetrical about s = 0, with a higher positive wing indicating
that it is more likely that scatterings will cause the photon energy to increase

I(ν′′) =

∞∫
−∞

P1(s) I0(ν) ds . (6)

at frequency ν′′ = νes if every photon is scattered only once as the radiation
propagates towards us through the population of electrons. In most cases
we expect a low scattering probability, as expressed by the smallness of the
electron scattering optical depth

τe =
∫

neσTdl � 1 , (7)

where the integral is along the line of sight, ne is the number of electrons per
unit volume along that line of sight, and σT is the Thomson cross-section.
If τe � 1, then the change in the specific intensity of the radiation field,
ΔIT(ν) = I(ν)−I0(ν) is

ΔIT(ν) = τe

∫
ds P1(s) (I(ν0) − I(ν)) . (8)
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At low temperature this integral can be performed analytically, since the
scattering kernel, P1(s) can be approximated as symmetrical and Gaussian.
This Kompaneets form,

PK(s) =
1√

4πye
exp
(
− (s + 3ye)2

4ye

)
, (9)

where
ye =

∫
ne σT dl

kB Te

me c2
(10)

is the Comptonization parameter, is obtained as the solution of a diffusion
problem for the photon occupation number as a result of inverse-Compton
scatterings, and can be thought of as encoding only the mean and width of
the P1(s) distribution.

For such a thermal electron population and a Planckian microwave back-
ground spectrum, with radiation temperature Trad, the single-scattering
change in the specific intensity is given by the Kompaneets spectrum for the
SZ effect,

ΔIT(ν) = Δ IT0
x4 ex

(ex−1)2
(
x coth

(x
2

)
−4
)

, (11)

where x is the scaled frequency

x =
hν

kBTrad
= 0.0176 (ν/GHz) (12)

and ΔIT0 is the specific intensity scale

ΔIT0 = I0 ye , (13)

with I0 being the specific intensity scale of the CMB itself

I0 =
2h
c2

(
kBTrad

h

)3

= 2.7 × 10−18 W Hz−1 m−2 sr−1 . (14)

At low frequencies, or for moderate cluster temperatures, this spectrum is a
close approximation to the relativistically-correct form that can be calculated
by numerical integration. However, precise measurements of the SZ effect,
and measurements at high frequency, should use the full form (and include
the effects of multiple scatterings), since the change in the spectral shape with
temperature is surprisingly fast. Figure 3 compares the spectrum of ΔIT for
Te = 15 keV as calculated from (11) and as calculated using the full numerical
integral. There is a significant difference between the high-frequency shapes
of the two spectra at x >∼ 1 (ν >∼ 50 GHz). Approximations for the relativistic
corrections to the thermal SZ effect have been given by a number of authors,
for example [17], and provide convenient ways of avoiding the full calculation.

For a rich cluster of galaxies, the electron scattering optical depth along
a line of sight through the centre of the cluster is typically of order 10−2,
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Fig. 3. The spectral distortion of the microwave background spectrum, ΔIT/ΔIT0,
as a function of x = 0.0176(ν/GHz) for a population of electrons with temperature
15 keV. The dotted line shows the Kompaneets spectrum, while the solid line shows
the spectrum calculated by numerical integration

implying that only about 1% of CMB photons are scattered, and the single-
scattering approximation should be good for most purposes. Since the typical
electron temperature of a rich cluster is about 5 keV, the corresponding value
of the Comptonization parameter, ye ∼ 10−4, indicates that after passage
through the cluster the CMB photons are far from being in equilibrium with
the cluster gas.

The shape of ye on the sky gives the angular structure of the SZ effect.
For an isothermal cluster, the shape of ye as a function of angle from the
cluster centre, θ, is the same as the shape of the τe(θ) function, and is given
by the projected electron density. The isothermal β model [10] provides a
simple description of the electron density in a cluster atmosphere, and often
gives a reasonable model for the shape of the X-ray surface brightness from a
cluster. In this model the gas density follows

ρg(r) = ρg0

(
1 +

r2

r2
c

)− 3
2 β

(15)

and the resulting SZ effect has shape
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ye

ye0
=

τe
τe0

=
(

1 +
θ2

θ2
c

) 1
2− 3

2 β

. (16)

The value of β for a cluster of galaxies is typically 0.65−0.75, so that the
SZ effect of a cluster falls off relatively slowly, approximately as θ−1, at large
angles from the cluster centre. This is a much slower decrease with angle than
the X-ray profile of a cluster (which falls off approximately as θ−3), and so
we expect the SZ effects of clusters of galaxies have larger angular sizes than
their X-ray structures.

At large angles from the cluster centre (16) must cease to be valid, or the
total (negative) flux density of a cluster would become infinite. We expect the
temperature profile and density profile to change so that the simple isothermal
beta-model ceases to be valid.

2.3 Kinematic Sunyaev–Zel’dovich Effect

The thermal SZ effect of a cluster of galaxies will be confused by its kinematic
SZ effect. The kinematic effect is produced by clusters which are in motion
relative to the frame in which the CMB has zero dipole. In the cluster frame,
the CMB develops a dipole term proportional to the cluster’s speed, and the
scattering of this anisotropic radiation field causes it to become slightly more
isotropic (by an amount ∝ τeβ, and hence generates a kinematic SZ effect).
Transforming back to the observer’s frame, there will be a change in the
brightness of the radiation towards the cluster centre. The spectrum of this
effect is

ΔIK(ν) = −Δ IK0
x4 ex

(ex−1)2
(17)

where x is again the dimensionless frequency and the scale of the effect is

ΔIK0 = I0 βz τe =
2h
c2

(
kBTrad

h

)3

βz τe , (18)

where βz is the component of the cluster velocity along the line of sight.
This spectral shape is valid in the same limits as the Kompaneets spectrum:
corrections for higher cluster temperatures are given in [30].

At low frequencies the ratio of the kinematic and thermal SZ effects is

ΔIK(ν = 0)
ΔIT(ν = 0)

=
1
2

ΔIK0

ΔIT0
≈ 0.085

(
vz/1000 km s−1

)
(kBTe/10 keV)−1 (19)

which suggests that the kinematic effect will be hard to detect against the
more intense thermal effect. Separation of the effects relies on their different
spectra (Fig. 4). If the total SZ effect of a cluster can be measured over a
wide enough range of frequencies, then spectral decomposition can be used
to separate the effects. The thermal effect is zero at roughly (exactly, in the
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Fig. 4. The spectra of the thermal and kinematic Sunyaev–Zel’dovich effects. The
two effects are separable if the spectrum is observed over a wide enough range of
frequencies

Kompaneets spectrum) the frequency at which the kinematic effect has max-
imum amplitude, ∼ 220 GHz, so precise measurements near 220 GHz have
the potential of measuring the radial components of the velocities of clusters
of galaxies. In fact any attempt to measure the velocity of a cluster in this
way will suffer from the difficulty of extracting the signal of the kinematic
effect in the presence of primordial structure in the CMB, which has the same
spectrum and is likely to be of larger amplitude on angular scales of a few
arcmin on which cluster SZ effects are significant.

2.4 Non-Thermal Sunyaev–Zel’dovich Effect

Just as scattering from thermal electrons gives an SZ effect, so does scattering
from non-thermal electrons. The spectrum of the scattered radiation in this
case will differ from that shown in Fig. 4, and will depend on the shape of
the electron spectrum. In the limiting case where the electrons are highly
relativistic, we might expect inverse-Compton scatterings to shift photons
completely out of the radio band and into the X-ray (or beyond). In that case
the SZ effect will be proportional to τe rather than ye. Details of the calculation
of the spectrum for a non-thermal electron population are given by [4, 12].
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While the non-thermal SZ effect is observable in principle, it is expected
to be difficult to detect in practice because the population of non-thermal
electrons is likely to be associated with direct non-thermal radiation, such
as synchrotron radiation. Nevertheless, measurements of the non-thermal SZ
effect may be of interest in studying the energetics of radio sources [27].

2.5 Polarization

Along with the intensity signals, the SZ effects also contain polarization sig-
nals. The simplest to understand is the polarization caused by multiple scat-
terings within the cluster, where one expects a radial pattern of polarization
with intensity ∝ τeΔI. Other polarization signals are associated with mo-
tion of the cluster across the line of sight (with intensity ∝ ΔIv⊥/c), and
from scattering the CMB quadrupole. All these effects are extremely small,
inaccessible to the current generation of instruments, and generally badly con-
fused by background structures in the CMB. However, this channel of the SZ
effect may become amenable to study with the next generation of instruments.
Details of the amplitude and spectrum of these effects may be found in [11].

3 Observing the Sunyaev–Zel’dovich Effect

SZ observations can be undertaken using radiometric detectors, interferome-
ters or bolometers. Each requires specific techniques and has associated with
it a particular set of systematic errors.

3.1 Fundamental Considerations in Observation Design

Before embarking upon an SZ observing program, various factors must be
considered. Estimation of the angular size and amplitude of SZ signals is
imperative. For a beam-switching experiment, the observer must account for
any SZ signal present in the “off” beam in order to correctly measure the
central decrement. High-resolution interferometers are only sensitive to the
extended cluster signal on their shortest baselines: reconfiguration may be an
option. Sensitivity requirements apply to all instruments.

An isothermal β-model of the form (15), although not strictly physically
correct, can be applied to estimate the extent of Comptonization for a par-
ticular cluster. In a rich cluster with a high X-ray luminosity a typical core
radius would be ∼ 250 kpc, corresponding to an angular core radius θc of a
few arcmin for a cluster at redshift ∼0.1. The β parameter for a rich cluster
is typically ≈ 2/3. The central Comptonization parameter ye0 ≈ 10−4. Note
that the SZ effect is larger in angular size than the X-ray signal, perhaps by
a factor of four in full-width to half-maximum (FWHM).

The fundamental quantity of interest is the flux density, Sν . This is the
specific intensity integrated over the solid angle observed by the telescope.
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In the Kompaneets limit the flux density of the thermal effect produced by a
cluster is

ST,ν =
∫

ΔIT(ν) dΩ = I0
x4ex

(ex−1)2
(
x coth

x

2
−4
) ∫

yedΩ , (20)

where x is the scale frequency (12) and I0 is the specific intensity scale of the
CMB (14).

As SZ effects are usually of larger angular size than the FWHM of the
telescope beam, a measure of the surface brightness is useful. Interferometer
observers commonly adopt the flux density per unit solid angle, ΣΩ, and
single dish observers tend to prefer the brightness temperature, TRJ. The
fractional change in the radiation temperature along the line of sight through
the cluster centre from the thermal SZ effect, and the corresponding beam-
averaged brightness temperature change, are

(
ΔT

T

)
T

(ν) = ye0

(
x coth

x

2
−4
)

(21)

ΔTRJ,T(ν) = ye0Trad
x2ex

(ex−1)2
(
x coth

x

2
− 4
)

. (22)

Both these temperature quantities are redshift independent, but the flux
density ST,ν , and practical measures of the temperature quantities are not,
because of the introduction of a distance scale associated with the ratio of
the linear size of the cluster (rc = DAθc, where DA is the angular diameter
distance of the cluster) and the angular size of the telescope beam.

The flux density per unit solid angle and the brightness temperature are
related by

ΣΩ =
2kB

λ2
TRJ,ν , (23)

where ΣΩ and TRJ are functions of both frequency and position.
Figure 3 shows the specific intensity spectra for the thermal and kinematic

SZ effects. The thermal effect is zero around 220 GHz, which leaves a useful
window for observing the kinematic effect alone, but both the thermal and
kinematic effects may be confused by primordial structure in the CMB.

Sensitivity Requirements and Limits

In order to determine the feasibility of observing a particular cluster, some
assessment of the expected SZ signal is required. The richest clusters of galax-
ies typically have ye0 ≈ 10−4. So for exploration of the thermal SZ effect, sen-
sitivity in ΔT/T units of around 10−5 is useful. Thus the minimum required
sensitivity must be a fraction of

ΔIT0 = I0 ye0 ≈ 2 mJy arcmin−2 , (24)
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which is a rough estimate of the amplitude of the thermal effect at the negative
and positive peaks of the spectrum (Fig. 3). A telescope with a 1 arcmin beam
(i.e. solid angle ≈ 0.5 arcmin2) will therefore need a sensitivity of 0.2 mJy or
better if it is to detect a rich cluster’s thermal SZ effect with high signifi-
cance. This is more than feasible at cm and mm wavelengths, although still
challenging in the sub-mm. If work further down the cluster luminosity func-
tion is of interest, then a sensitivity of 20 μJy might be regarded as a typical
requirement.

In terms of brightness temperature, in the Rayleigh–Jeans region, a sensi-
tivity ye0 ≈ 10−5 corresponds to

ΔTRJ,T0 = −2ye0Trad = −55 μK . (25)

The brightness temperature signal is smaller at higher frequencies, although
work in the secondary peak at about 350 GHz (Fig. 3) may be feasible.

In practice, the sensitivities in (24) and (25) are barely adequate for ob-
serving the thermal SZ effect. Extra sensitivity is always useful in the light
of systematic problems with data, and also for probing quantities such as the
cluster luminosity function. To detect the kinematic effect a factor of ten fur-
ther improvement in sensitivity is required. Since spectral techniques must be
used to separate the thermal and kinematic effects, this sensitivity must be
available in several bands that cover a wide frequency range.

3.2 Basic Observation Types

Radiometers

Single-dish systems may have a receiver mounted at either primary or sec-
ondary focus, depending on the size of the array. The simplest case would be
to observe with a single beam, however the data obtained are then likely to be
severely contaminated by atmospheric variations, ground spillover, and other
parasitic signals.

The sensitivity of a radiometer system is

ΔTA =
Tsys√
2 Δν τ

, (26)

where Tsys is the system noise temperature, Δν is the bandwidth of the re-
ceiver, and τ is the integration time used. For systems operating at ∼30 GHz,
values of Tsys ∼30 K and Δν ∼1 GHz are readily obtained, so that the antenna
temperature noise after about 1 hour of integration should be ΔTA ∼11 μK,
and the corresponding sky noise (for an antenna with efficiency 0.6) would be
ΔTsky ∼19 μK. In reality, the noise does not decrease as τ−1/2 because of the
varying ground and atmosphere contributions, and because the receiver noise
cannot be made “white” over such a long period.

In order to overcome these problems, it has been found useful to combine
techniques of position switching and beam switching. We discuss here only a
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simple switching strategy based on a two-beam system, but the concept can
be extended to more complicated switching patterns and arrays of beams,
as described in [7], for example. Position switching involves physically mov-
ing the telescope between the target and a reference background region every
few seconds. The main limitation of using this technique alone is that the
switching occurs at a rate far slower than that at which observing conditions
may be changing. Beam switching involves using two beams, provided by two
separate feeds, one to observe the target (beam A) and one to observe the ref-
erence background (beam B). The resulting measurement of the differential
power, ΔPAB = PA−PB is averaged over the desired integration time. The
receiver system can switch between the two beams on millisecond time-scales,
which is sufficiently fast to freeze out atmosphere, ground, and receiver fluctu-
ations. The remaining problem is that the two regions are being observed with
different feeds, which may have systematically different responses. Combining
the two switching strategies improves things further. Now an observing cycle
of duration tcy is broken into three segments

1. beam A is off target, and beam B is pointed at the target with the
difference signal ΔPAB integrated over time 1/4tint (s1 =

∫
ΔPAB dt);

2. beam A is pointed at the target, and beam B is off target with the differ-
ence signal integrated over 1/2tint (s2); and

3. beam A is off target, and beam B is pointed at the target with the
difference signal integrated over 1/4tint (s3)

and then the best estimate of the sky brightness difference between the target
and the average brightness of two reference regions offset to either side of the
target is proportional to

s = s2−s1−s3 . (27)

This symmetrical switching pattern is relatively efficient at reducing noise
from parasitic signals and changing receiver characteristics, since it takes out
linear drifts in the behaviour of the system. Typically the integration time,
tint, is (80–90)% of the time taken for the complete observing cycle, tcy, with
the lost time being taken up by moving the telescope. It is, however, still
necessary to design the equipment to reduce non-ideal behaviour as far as
possible.

Since the observation of an SZ effect may take a number of hours, spread
over a number of days, the positions of the reference beams rotate on the
sky about the target to populate reference arcs which may extend into a
full circle for a circumpolar source. As with all astronomical measurements,
SZ observations are subject to contamination by foreground and background
sources. The problem is exaggerated for switching strategies, but fortunately
switching in azimuth provides helpful modulation according to the parallac-
tic angle, p. Data contaminated by sources located in the reference arcs can
thus be filtered and removed, but this is not possible for clusters where sig-
nificant radio sources lie near the cluster centre — in such cases the source
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flux densities must be subtracted from the measurements, and the observation
should be designed to avoid the effects of the sources as much as possible, by
pointing away from them, or by choosing a frequency at which their effect is
reduced.

By adopting the such strategies, single-dish observations can potentially
provide rapid detections of SZ effects, particularly if the telescope is equipped
with an array receiver, but the technique faces three generic problems.

1. Cluster selection. Switching techniques introduce a selection effect because
they limit the range of angular sizes that can be observed efficiently. Small
SZ effects may only fill a fraction of the beam, and so produce a relatively
small signal. Larger objects may fill both the target and reference beams
giving a small detectable signal after differencing. Between these limits
there is an optimal range of angular sizes (and hence redshifts) for a
particular system.

2. Calibration. The brightness scale must be well-calibrated if the absolute
value of the SZ effect is of interest. This is difficult, as few bright radio
sources have well-known flux densities and many of the contenders are
variable or have polarisation issues. In addition, the bandpass of the re-
ceiver must be well-known for spectral studies, the gain of the telescope
may change with elevation, and the beam-shape must be well-known (in-
cluding any variations) for correct interpretation of the results. Finally,
real-time calibration is necessary to account for variations in the opacity
of the atmosphere.

3. Confusion. As with all astronomical observations, SZ effects are liable to
be confused with other foreground or background structures. Primordial
anisotropies in the CMB may be problematic. If sensitive data at two or
more frequencies are available, this contamination can be removed as it
has a different spectrum from thermal SZ effects. The kinematic effect
has the same spectrum as the CMB, so will also be removed by this
method. Foreground radio sources make an important contribution to the
confusion level. A large fraction of these objects will be steep-spectrum
and thus less important at high frequencies, although a significant fraction
of the remaining sources will then be variable. Some improvement can be
made by detecting potentially confusing sources using a high-resolution
interferometer map, and then subtracting their contribution from the SZ
data.

Many reliable SZ measurements have been obtained using single-dish sys-
tems, with random measurement errors <100 μK, and only low-level residual
systematic errors (for example from radio source confusion). Some example
results (from [4]) are shown in Fig. 5. It can be seen that good measurements
of the amplitudes and angular sizes of the SZ effects of X-ray bright clusters
can be made using the beam- and position-switching.
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Fig. 5. Measurements of changes in the apparent brightness temperature of the
CMB as a function of declination in the three X-ray bright clusters CL 0016+16,
Abell 665, and Abell 2218. The largest SZ effects are seen near the centres of the
clusters, and the angular sizes of the effects are consistent with predictions based on
the X-ray images. The horizontal lines mark the range of possible systematic errors
in the zero levels on the data, and the error bars contain both random and systematic
components. The brightness temperature scale is subject to a 5% systematic error

Interferometers

Interferometers offer a natural improvement to single-dish radiometers by
virtue of their ability to control various sources of systematic error. Decreasing
sensitivity away from the pointing centre means that contaminating signals
such as ground spillover and terrestrial interference will be attenuated. Signals
from the Sun, Moon and planets can be filtered due to different modulating
fringe patterns. Also, instruments with a wide range of baselines allow si-
multaneous observations of foreground radio sources whose contribution can
subsequently be separated from the SZ signal, automatically taking account
of possible source variability.

An interferometer measures the product of voltages between pairs of an-
tennas. A simple case is presented in Fig. 6. Two antennas of area a are
separated by a distance b and observing a source at an angle θ. The energy
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Fig. 6. A simple one-dimensional interferometer. Radiation from the source must
travel an extra distance b sin θ to reach antenna 1

received per unit area from the sources is S, giving an output

A ∝ aS cos
(

2π
b

λ
sin θ

)
. (28)

Phases are usually not measured absolutely, but relative to some reference
direction, θ0. For a source offset by a small angle Δθ from θ0, we have θ =
θ0 + Δθ and (28) becomes

A ∝ aS cos
(

2π
b

λ
Δθ cos θ0

)
. (29)

The correlated output differs at different antenna separations, so that the an-
gular resolution of this simple interferometer is proportional to λ/b. A more
complicated multi-baseline instrument is sensitive to a range of scales deter-
mined by the set of baseline lengths defined by the antenna locations. The
shortest baseline defines the maximum scale which can be sampled. Sky struc-
tures on larger angular scales will not modulate A with θ0 (and hence with
time), and so will not produce a detected signal.

The interferometer response can be expressed more generally — see [37]
for a full treatment. We can write the baseline as a vector (u, v, w), where
w is towards the source and u and v point East and North respectively as
seen from the source position. The position of the source on the sky is usually
described in terms of co-ordinates (l,m, n). The response becomes

A ∝
∫

dl
∫

dma(l,m) I(l,m)
e−2πi(ul+vm+w(n−1))

n
, (30)
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where a(l,m) is the effective total area of the antennas in the direction (l,m)
and I(l,m) is the brightness distribution on the sky. n = (1− l2−m2)1/2 ≈ 1
for small angles, simplifying the Fourier inversion required in (30) to pro-
duce a sky map of I(l,m). A map made from interferometer data contains
structures which are modulated by the synthesized beam. This is given by the
Fourier transform of the telescope aperture, which is (30) above with the sky
brightness replaced by a two-dimensional δ function.

Of course, interferometers also come with their own set of problems.

1. Bandwidth smearing. In practice an interferometer observes over a range
Δν about some central value ν0, rather than at a single frequency. The
values of (u, v, w) change across the passband, limiting the field size and
sensitivity. To avoid this, the band Δν may be split and each channel
correlated separately.

2. Time constant. Integrating over a few seconds per measurement causes
off-axis sources to be smeared in arcs in the image plane, reducing the
peak signal. Loss of precision can be minimised by reducing integration
times appropriately.

3. Temperature sensitivity. The temperature sensitivity of an interferometer
is given by

ΔTA ∝ Tsys√
Δν tint Ncorr

1
Ωsynth

(31)

(compare 26) where Ncorr is the number of antenna–antenna correlations
used in making the synthesized beam of solid angle Ωsynth. However, for
a source of size θ, baselines longer than λ/θ “resolve out” the signal, and
thus only the shorter baselines contribute to the sensitivity. Most inter-
ferometers are designed to have high resolution, and may not be efficient
when observing the extended SZ effect.

4. Cross-talk. For compact configurations, microwave signals can leak into
adjacent antennas, giving a cross-talk signal which can easily dominate
the signals expected from SZ effects. This can sometimes be filtered out
using the differing modulation rates, although again this may increase the
noise.

The first interferometric map of the SZ effect, shown in Fig. 7, was made
by [18] using a Ryle telescope observation of the cluster Abell 2218 which lies
at z ≈ 0.17. When making a map of such data, it is normal to include only the
short baselines where the SZ signal is strongest: longer baselines contribute
extra thermal noise, and have already been used to locate and remove a num-
ber of confusing radio sources. The result of censoring the baselines is that the
maps have limited angular dynamic range. The agreement of the SZ brightness
recorded for Abell 2218 with previous single-dish measurements established
the credibility of SZ effect research. Many other interferometric SZ detections
have been made since, by instruments including the highly successful OVRO
and BIMA arrays [9].
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Fig. 7. This Ryle telescope observation of Abell 2218 was the first interferometric
detection of the SZ effect

The quality of SZ observations can obviously be improved by designing
an instrument to overcome the difficulties of using “normal” interferometers.
Baselines can be tuned for optimum SZ effect detection over some redshift
range (i.e. range of angular sizes), and longer baselines can be added to fa-
cilitate the removal of radio sources. An example of such a system now in
operation is the Very Small Array (VSA [19]; Fig. 8).

Bolometers

Bolometric observations are fairly similar to those made using radiometers in
a number of ways. They should be useful for SZ surveying as it is possible to
build large array detectors (with corresponding improvements in efficiency).
It is possible to cover a wide frequency range on a single telescope thus facili-
tating the subtraction of primordial CMB contamination, and also the search
for kinematic SZ effects. Bolometers have their own set of problems, includ-
ing atmospheric effects and confusion (mostly from star-forming galaxies). A
number of projects have measured the SZ effect, notably SCUBA, MITO and
VIPER+ACBAR [13, 34, 41].

The ACBAR instrument makes use of the significant advantage of bolome-
ters in that it takes simultaneous multi-wavelength data in several millimetre
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Fig. 8. The VSA was designed specifically to observe both galaxy clusters in SZ,
and primordial anisotropies in the CMB. This observation of Abell 1795 clearly
shows as SZ detection, but also illustrates the problem of contamination by the
primordial features. Multi-wavelength observations are required in order to remove
this confusion. The problem is particularly bad on these large angular scales–higher
resolution instruments do not suffer so badly

bands. For this to work effectively excellent conditions are required. The
VIPER telescope, for which the ACBAR detector was designed, is located in
Antarctica. The bolometric arrays have 16 pixels and work in three frequency
channels (with an additional channel in the 2001 season). The conditions are
in Antarctica are often excellent, with exceptionally dry air. The telescope has
FWHM 4–5 arcmin, chops over 3◦, has a large ground shield, and is well-suited
to for SZ effect work on relatively low-redshift clusters. The three frequency
channels are positioned above, on, and below the null in the thermal SZ ef-
fect, allowing a spectral separation of the thermal SZ effect from primordial
anisotropies in the CMB. A recent result, for the cluster 1E 0657-56 at red-
shift z ≈ 0.3, is shown in Fig. 9, where it can be seen that a signal with the
unusual positive, zero, negative signature of the thermal SZ effect is located
at the position of the X-ray cluster.

Summary of Observational Issues

In summary, there are some generic and some specific issues that must be
considered when an SZ observing programme is begun.
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Fig. 9. Images of the cluster 1E 0657-56 from the ACBAR channels at 150, 220
and 275 GHz. The three frequencies clearly show a decrement, no detection, and an
increment respectively, as expected. ROSAT X-ray contours are overlaid

1. Observation design must take account of angular dynamic range and sen-
sitivity

2. Radiometric observations are efficient, but usually limited by systematic
errors. Their strength lies in simple detections.

3. Interferometric observations come with different systematic errors, should
be good for mapping resolved structures, but are currently limited in terms
of angular dynamic range.

4. Bolometers are excellent for spectral work and have high sensitivity. Their
major limitation comes from atmospheric noise.

4 Cluster Science from the Sunyaev–Zel’dovich Effect

Applications of the thermal SZ effect for studies of cluster properties are
often associated with its proportionality to the line-of-sight integrated elec-
tron pressure, and hence to the thermal energy content of a cluster, while
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the kinematic SZ effect has the potential of providing information on clus-
ter velocities. A number of reviews of such applications of the SZ effect have
appeared (e.g., [4, 5]), and can be consulted for details beyond the outline
here.

4.1 Energy Content

As is evident from Sect. 3, measurements of the thermal SZ effect measure
the integrated ye over the solid angle of some telescope beam. From (10), the
integrated SZ effect flux density over an entire cluster is

ST ∝
∫

dΩ
∫

neTedl ∝
∫

neTedV (32)

and hence is proportional to the total thermal energy content in the cluster
atmosphere, Ugas. Since the atmosphere should respond quickly (in a sound
crossing time or two) to changes in its shape or mass, a measurement of the
total SZ effect from a cluster should provide a good measure of the gravi-
tational potential energy, and hence of the degree to which this cluster has
assembled. Such a measurement should be possible to high redshift, so that SZ
effect data should provide a rather direct measurement of the rate of cluster
formation.

In this respect the SZ effects of clusters are easier to use than the X-ray
surface brightnesses or temperatures, which are based on the n2

e emissivity of
cluster gas, and hence which require careful analysis to recover linear measures
of gas properties, such as the thermal energy content. However, the SZ effects
are generally rather small except for the most massive clusters, and so it will be
difficult to use this test with the current generation of SZ effect instruments.
Furthermore, the measurement requires an integration over the entire cluster,
and this would be likely to lead to significant confusion at low redshifts. This
will make it difficult to assemble a low-redshift SZ effect sample for comparison
with clusters selected at higher redshift.

4.2 Baryon Content

If an X-ray spectral observation has been made of a cluster of galaxies for
which an integrated SZ effect measurement has been made, and if the cluster
is close to isothermal, then the integrated thermal SZ effect flux density (32)
can be written

ST ∝ NeTe , (33)

where the electron temperature is measured by the X-ray spectrum, and Ne

is the total number of electrons in the cluster atmosphere. Since the cluster
gas is almost completely ionized, it is straightforward to relate Ne to the total
number of baryons in the gas (with a slight dependence on the metallicity of
the gas). The bulk of the baryonic material in a cluster is in the atmosphere,
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rather than in galaxies, so that Ne is a good indicator of the total baryon
content of a cluster. Since the total mass of a cluster can generally be derived
from the X-ray image and spectrum, it is possible to combine the value of Ne

with the X-ray derived mass to obtain a good estimate of fb, the fraction of
the mass in the cluster which is baryonic. We expect to see gradients in fb with
radius, but the integrated value of fb over the entire cluster (or at least over
a large part of the cluster) should be close to the universal baryon fraction, of
about 12%, if clusters are representative samples of the mass content of the
Universe, and the processes of cluster formation have not separated baryonic
and dark matter. A detailed study of CL 0016+16 has found good agreement
with the universal baryon mass fraction [40], and studies of populations of
clusters of different masses over a range of redshifts are in progress [9].

4.3 Gravitational Lensing and Cluster SZ Effects

An alternative measure of the total mass content of a cluster of galaxies is
provided by gravitational lensing, where the surface mass density is derived
from the shear field by an integral of the form

Σ = − 1
π
Σcrit

∫
d2θ′ κi(θ′, θ) ei(θ′) , (34)

where κi is some kernel and ei is the measured shear field (with summation
over two components of κ and e implied). In principle an SZ effect map of a
cluster of galaxies could be divided by the map of Σ to provide an image of
the line-of-sight integrated fb as a function of position, since the relationship
between ye/Σ and fb depends only on quantities which are constant over the
cluster, provided that the cluster gas is isothermal. A map of fb might be
expected to reveal some evidence of non-gravitational processes that occur in
cluster formation. For clusters at redshifts of a few tenths, where gravitational
lensing is most effective, maps with a resolution of about half an arcminute
would provide a few tens of resolution elements across a cluster. So far, only
integrated comparisons of the baryonic mass fraction derived in this way have
been possible (e.g., [40]), but comparisons of this type are likely to become
useful in the future. While similar tests are possible with X-ray data, the
n2

e dependence of the X-ray emissivity makes the extraction of a bias-free
baryonic density more prone to systematic errors, but with smaller random
errors, than with SZ data.

4.4 Cluster Gas Structure

Just as X-ray data can be used to study the structure of cluster atmospheres,
so potentially can the SZ effect data. However, as described in Sect. 3.2, most
current SZ data for clusters have poor angular dynamic range, so detailed
structural studies have not been possible. For example, Lancaster et al. [19]
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were able only to constrain a simple angular size measure for the low-redshift
clusters observed by the VSA, rather than to separate the effects of β and θc

in (15).
Although the n2

e dependence of X-ray data makes X-ray images far more
sensitive to the core than to the outer parts of clusters, the overall sensitiv-
ity of X-ray satellites is higher than of SZ effect measurements at moderate
redshift, so that X-ray data provide far superior information on cluster gas
structures than SZ data. This is not necessarily the case at high redshift,
where, because of the redshift-independence of the SZ effect surface bright-
ness, one might expect the SZ effect to provide the best information on cluster
formation, if sensitivities in the μK range on angular scales of order 10 arcsec
can be achieved, because of the redshift-independence of the SZ effect surface
brightness and the scaling of the SZ effect with ne.

4.5 Velocity Structure and the Growth of Clusters

The kinematic SZ effect (Sect. 2.3) can be separated from the thermal SZ effect
by spectral studies, and so could be used to measure the velocities of clusters
of galaxies. Such velocities might be expected to be small, except where the
clusters are in particularly massive superclusters or are about to merge, and
so the kinematic SZ effects would be expected to be of order 50 μK or less.
Detection of SZ effects of this amplitude will be difficult in the presence of
the thermal effect and confusion with primordial CMB structures. While the
thermal effect can, in principle, be removed to high accuracy if precise spectral
measurements are made (but see [7]), primordial CMB structures impose a
limit of about 150 km s−1 on the accuracy with which cluster velocities might
be measured (for clusters with arcminute-scale SZ effects, at redshifts >∼ 0.2 —
the confusion is higher at lower redshift). While this is the limit for individual
clusters, it is possible that a statistical measure of the random velocities of
clusters might be measured by comparing the scatter of apparent SZ effects
from cluster and non-cluster fields. Measurements to date have not approached
this accuracy (e.g., [20]).

A further element of confusion will arise from differential motions of gas
within the clusters. While the total radial velocity of a cluster will be measured
with a larger error in this case, a higher angular resolution measurement of
the kinematic SZ effect could show the motions of gas within the cluster
atmospheres. The largest such signals will come from motions near the cluster
cores, associated with cooling flows or with the injection of kinetic energy that
seems to prevent runaway cooling flows, since the density of the moving gas
is likely to be highest in the core.

A further source of kinematic SZ effect signals will arise from material
falling into the clusters, and measurements of these velocities would provide
useful information on the physics of cluster growth. Here the confusion from
CMB structures could be small, because the angular sizes of the infalling
clumps will be small, but the amplitudes of the kinematic SZ effects will be
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only at the μK level unless the infalling lumps of material are both fast-moving
and dense. An example of a case where such a measurement might be possible
is 1E 0657-56 [22], where a fast-moving bullet of material is traversing an
X-ray atmosphere.

4.6 Supercluster Gas

On the largest angular scales we might expect to see thermal SZ effects from
the diffuse gas in superclusters of galaxies, where the X-ray surface brightness
is too low to detect, because of the n2

e emissivity of the gas, but the line-of-
sight integrated electron pressure is high. Measurements at a single frequency
are unlikely to be able to detect the SZ effect, since the angular sizes of su-
perclusters are large, and so they will be badly confused by primordial CMB
structures. However, the spectral signature of the thermal SZ effect is dis-
tinctive, and should allow measurements of the SZ effects of supercluster gas,
provided that other sources of confusion are sufficiently small. Such superclus-
ter SZ effects might be detectable by the Planck satellite, and would provide
measurements of the residual baryonic material outside the dense parts of
cluster atmospheres. The integrated amount of such material cannot be too
large, or the overall Comptonization of the CMB would have been detected
as a spectral distortion by the COBE satellite (e.g., [4]).

5 Cosmology from the SZ Effect

Cosmology with the SZ effects is based upon two major attributes of the
effects—their redshift-independence, which should allow the study of cluster
atmospheres at high redshift, and the contrast between X-ray and SZ effect
images of clusters, which allow absolute measurements of distance. Reviews
of some of these applications can be found in [4, 5, 7, 9].

5.1 The Cluster Hubble Diagram

The best-known use of the thermal SZ effect is to measure the distances of
clusters of galaxies. In its simplest form, the method compares the X-ray
surface brightness, bX0, of a cluster on some fiducial line of sight,

bX0 ∝ n2
e0 Λ(Te0)L , (35)

where Λ(Te0) is the emissivity at electron temperature Te0, with the thermal
SZ effect on the same line of sight,

ΔTRJ,T0 ∝ ne0 Te0 L , (36)

and eliminates the scale (here written as the central) electron density from
(35) and (36) to obtain a relation for the path length along this line of sight
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L ∝ ΔT 2
RJ,0

bX0
· Λ(Te0)

T 2
e0

. (37)

The path length, L, is a linear measure of the size of the cluster, and can
be related to the corresponding angular measure, θL, that can be obtained
from a cluster image (under some assumption about the shape of the cluster
along the line of sight). The angular diameter distance of the cluster is then
obtained as DA = L/θL. The most difficult step in this process is that of
determining the constant of proportionality in (37). This constant depends
on the structure of the gas, and must be based on a detailed model of the
cluster, derived from and consistent with all the information available. It is
necessary in using this method to treat each cluster as an individual, and
derive an individual constant of proportionality.

This technique has been used for many clusters, for example [15, 25, 32]. A
recent calculation of the distance to CL 0016+16 (Fig. 10) using this technique
gave DA = 1.16 ± 0.15 Gpc [40], implying a Hubble constant of 68 ± 8 ±
18 km s−1 Mpc−1 if it is assumed that the density parameters Ωm = 0.3 and
ΩΛ = 0.7.

Because this distance-measuring technique relies on comparing a line-
of-sight depth of the cluster, L, with the apparent angular size, θ, Hubble
constant estimates based on single clusters are likely to be prone to large
systematic errors because of their unknown three-dimensional shapes (this
is responsible for much of the systematic error quoted for CL 0016+16).

35:00

30:00

25:00

16:20:00

30 0:19:00 30 18:00 17:3

Fig. 10. A vignetting-corrected 0.3−5.0 keV image of CL 0016+16, from an XMM-
Newton observation [40]. A quasar 3 arcmin north of the cluster [23], and a second
cluster, 9 arcmin to the south–west [16], are at similar redshifts to CL 0016+16
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Clumping of the intracluster medium, poorly-determined thermal substruc-
ture, and a number of other problems can also cause systematic errors. Ex-
haustive discussions of such problems may be found in papers on such distance
measurements, such as [6].

Perhaps the most serious issue in using this technique is the orientation
bias in the distances that is introduced if the sample of clusters is selected
according to their central surface brightnesses, since such clusters will prefer-
entially be elongated along the line of sight, with L being too large for the
measured θL. SZ effect surveys in total SZ effect flux density (Sect. 5.2) will
provide an excellent sample of clusters without such a bias over a wide red-
shift range. Molnar et al. [29] have shown that a set of about 70 clusters could
provide useful measure of the equation-of-state parameter, w, as well as the
Hubble constant. A recent review of the state of measurement of DA(z) using
this technique is given by Carlstrom et al. [9].

If distances are to be measured by this technique, then it is critical that
the absolute calibrations of the X-ray and SZ data are excellent, and that
cluster substructure is well modeled. Since clusters are relatively young struc-
tures, and likely to be changing significantly with redshift, variations in the
amount of substructure with redshift might be a significant source of sys-
tematic error—this has not yet been sufficiently studied, because of the lack
of a well-defined sample of clusters spanning a sufficient redshift range with
high-quality X-ray imaging and spectroscopy.

5.2 Surveys for Clusters at High Redshift

It is difficult to detect high-redshift clusters by their X-ray emission, since
the X-ray flux of a cluster of given X-ray luminosity decreases steeply with
increasing redshift. Thus only the highest-luminosity clusters are seen at the
highest redshifts, and studies of the evolution of the luminosity function are
correspondingly restricted. By contrast, the SZ effect flux density of a cluster,
as observed by most telescopes, is a weak function of redshift over a wide
range of redshifts (e.g., Fig. 11), so that the sample of clusters obtained from
a blind survey for SZ effects should be almost mass limited, provided that the
cluster structures don’t change too much with redshift.

Since the SZ effect survey sensitivity is such a flat function of redshift, SZ
effect techniques should prove more effective at finding high-redshift clusters,
and at locating clusters over a wider range of gas mass, than X-ray surveys:
for surveys such as the XMM-LSS [31], plausible SZ effect surveys are more
effective at z >∼ 0.7, if the clusters at such redshifts resemble those at low
redshift. However, since we know that clusters assembled relatively recently,
we might expect that SZ-selected samples of clusters will be limited by the
changing cluster sizes, gas contents, and coherence, and that there will be
some maximum detectable redshift at which the gas in clusters first gains a
high enough pressure to become the source of a significant SZ effect.
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Fig. 11. The observable signal as a fraction of the central SZ effect, for measure-
ments with a 1 arcmin beam and 1.5–5 arcmin beam-switching angle. Note the long
region of almost constant efficiency at redshift >∼ 0.3, which causes surveys using
such configurations to generate almost mass-limited samples of clusters

The distribution of clusters by redshift can provide useful measures of cos-
mological parameters and tests of our models of cluster heating and evolution
(e.g., [2, 14, 29]). Follow-up studies of a subsample of the clusters, with long X-
ray observations and high-sensitivity, high angular-resolution, SZ-effect map-
ping, should provide excellent information on the physics of cluster formation
– for example on the evolution of the cluster baryon fraction (Sect. 4.2, [9]),
or the changing distribution of cluster velocities (Sect. 4.5). It would also
provide an ideal set of clusters for the measurement of cluster distances and
the determination of cosmological parameters, provided that enough struc-
ture information is available to allow good models of the gas distribution to
be deduced for each cluster. It has even been shown that a comparison of a
map of the SZ effect with a gravitational lensing map can provide a rich set of
information on cluster properties without conducting a redshift survey [39].

5.3 SZ Effect Confusion and the Primordial Background

Just as primordial structures in the CMB confuse measurements of the SZ
effect, and limit the detectability of the effect on some angular scales unless
careful spectral decomposition is undertaken, so the presence of a foreground
of SZ effects limits the quality of the information that can be obtained on
the power spectrum of the CMB at high multipole numbers. The thermal SZ
effect can be removed using spectral techniques, but the kinematic SZ effect
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provides a source of confusion that can be reduced only by excluding parts
of a CMB map showing significant thermal SZ effects under the assumption
that there are no fast, low-temperature, gas clouds that could produce large
kinematic effects without a corresponding thermal effects: see (19). Studies
of SZ effect confusion suggest that it can be important only at multipole
numbers, l >∼ 2000 (e.g., [28]), but the excess power recently seen in high-l
measurements of the power spectrum of the CMB may indicate that there is
a larger contribution from early hot gas atmospheres than had been thought.
Information on this will come with the next generation of multi-frequency
CMB surveys, which are also effectively SZ effect surveys.

5.4 Sampling the Cosmic Microwave Background

Finally, a variety of techniques have been proposed for using SZ effects to
study the intrinsic properties of the CMB. Thus, for example, the ratio of the
thermal SZ effects from a single cluster at two different frequencies provides
a measure of the temperature of the CMB, Trad [3]. Measurements of the
SZ effects of a sample of clusters at different redshifts allow a test of the
cosmological change of CMB temperature with redshift,

Trad = Trad,0 (1 + z) . (38)

No deviation from this relation was found by Battistelli et al. [3].
Another application of SZ effects to the study of the CMB could be to

check the universality of the low quadrupolar term that has been measured
in the CMB power spectrum. This is possible by examining the SZ effect
polarization of a distant cluster, since one of the polarization terms arises
from the conversion of the local CMB quadrupole to linear polarization by
scattering in the cluster atmosphere. Multiple samples of the CMB quadrupole
at distant places in the Universe could then be used to reduce cosmic variance
in our local measurement of the quadrupole. Unfortunately the polarization
signal is weak, and is expected to be confused by other polarization signals,
including the gravitational lensing of the CMB polarization by the mass of
the cluster. No sufficiently sensitive work on the SZ effect polarization channel
has yet tested the feasibility of this technique.

6 The Next Generation of Instruments

SZ studies to date have largely been performed on an ad-hoc set of clusters,
with few studies of representative samples of clusters selected without orienta-
tion bias (such as, e.g., [24]). SZ effects are linear probes of cluster properties
so should provide well-defined samples for both cosmological studies and in-
vestigating cluster physics. A major focus of current SZ work is to construct
instruments capable of performing blind surveys, and then to use those instru-
ments to develop SZ-selected samples of clusters. The full range of observing
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techniques are suitable to some extent, but it is likely that array receivers
(both radiometric and bolometric) mounted on single dishes will provide the
fastest means of surveying many square degrees with arcminute resolution.

Most SZ work to date has focussed on simple detections. In the new era,
with purpose-built instruments and SZ-selected samples, high angular resolu-
tion follow-up will be required. Such studies will return detailed information
about the cluster gas. It may be possible to detect kinematic effects from
rapidly-infalling filaments, or to see substructure from the accretion of sub-
clusters. Polarisation measurements of the brightest SZ clusters will yield
yet further information. Measurements of the radial and transverse velocities
would provide the dynamical information required to test models of cluster
formation.

Distinct types of telescope are required for blind surveys and detailed stud-
ies. Survey work requires a reasonable field of view and high sensitivity. This
may be simplest using bolometer or radiometer arrays, though tailored inter-
ferometers should also be suitable. Detailed studies will require high angular
resolution (synthesized beams of 10 arcsec or less) which may best be achieved
via bolometer arrays on large single dishes, or interferometers.

6.1 Proposed Instruments

Most SZ work to date has been undertaken using non-ideal instruments such
as the Ryle interferometer [18] and the OVRO 40 m [15]. Some more suitable
instruments also exist, such at the VSA [19], ACBAR [34], CBI [38] and
SuZIE [26]. There is, however, still room for improvement.

New interferometers currently in the construction phase include AMiBA
[21], AMI [1] and the SZA [36]. We here discuss AMiBA as an example.
AMiBA is an project of ASIAA and the National Taiwan University, and the
instrument is situated on Mauna Loa, Hawaii. AMiBA is a dedicated CMB
interferometer, designed for rapid surveys of CMB structures including SZ ef-
fects. The operational array is nearing completion, and replaces the prototype
which previously occupied the site. The AMiBA design involves 19 dishes of
two diameters (0.3 and 1.2 m), resulting in baselines over the range 1.2−6 m
(380λ < b < 1875λ at 95GHz). With its 20GHz bandwidth and dual po-
larisation capabilities, AMiBA should achieve a sensitivity of ∼ 1.3 mJy in
1 hour. The problem of radio source confusion is not expected to be signifi-
cant at such a high observing frequency, with an estimated 0.3 sources above
∼ 1 mJy per survey field. Neither is CMB primordial anisotropy expected to
be a significant contaminant on these angular scales, and most can be filtered
in mosaic mode. For redshifts > 0.7, AMiBA will be more sensitive than the
XMM Large Scale Structure Survey [31], and an AMiBA-survey selected sam-
ple of clusters will be close to mass-limited. AMiBA also has the potential of
being able to find a new class of objects, which are X-ray dark but SZ bright,
if such objects exist.
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Planned radiometers for survey work are arrays mounted on large single
dishes. An example is OCRA, which is expected to be the fastest survey instru-
ment of its kind [8]. The two-beam prototype receiver, OCRA-p, is mounted
on the 32-m Torun telescope, and a 100-beam array is planned. OCRA-p has
observed four clusters in SZ during its check-out phase, achieving detections
with ∼ 800 s integration times. Operating at 30GHz, OCRA-p has FWHM
1 arcmin and achieves 5mJy sensitivity in 5 minutes. The full OCRA array
would be sufficiently sensitive to map 100 deg2 to the confusion limit in a mat-
ter of months, and should generate a catalogue of clusters with significant gas
contents over the entire redshift range by virtue of the redshift independence
of the SZ effect. In addition, the full array will be ideal for detailed mapping
of clusters at lower redshifts.

Large bolometer arrays are also an excellent way to make SZ effect surveys.
Good examples are provided by the the planned SPT and APEX surveys, and
bolometer arrays on large single dishes may also provide high-quality SZ effect
images of clusters detected in finding surveys made using smaller antennas —
the AzTEC array on the LMT may be of great use in this respect.

6.2 The Future: A Hypothetical Ideal Instrument

The next level in terms of SZ surveys will be to achieve sky coverage of
100 deg2 or more to a sensitivity of 30 μK or better. For this to be re-
ally effective, surveys of this scale should be made on timescales of a year
or less. With the expected thousands of cluster detections from the Planck
satellite, it will also be desirable to have the capability of providing detailed
follow-up observations of SZ effect clusters. In addition, the next generation of
X-ray telescopes (Con-X and XEUS ) will have much improved sensitivity and
spectral capabilities, thus producing far superior images of clusters and their
thermal substructures. In order to push SZ science forwards, and to further
exploit the power of combining SZ and X-ray data, it is necessary to begin
considering an SZ telescope capable of matching these instruments.

The desired improvements in SZ surveying will require multi-wavelength
observations with channels well matched in resolution and astrometric accu-
racy to overcome the problem of confusion imposed by CMB features, and to
separate the thermal and SZ effects. The ideal facility may be a bolometer
array mounted on a large telescope located at an excellent site, with simul-
taneous imaging in several passbands in the mm and sub-mm ranges. For
substructure studies, sub-arcmin resolution will be required over fields several
arcmin in size. This may also be achievable via bolometric techniques, and
multi-wavelength capabilities would facilitate separation of SZ signals from
foreground contamination. The addition of some polarization capability to
these instruments would also open new avenues of exploration.

Scaled interferometric arrays may also provide a route towards matching
standards set by the next X-ray missions. The general design would involve
a configuration such that comparable sky areas could be synthesised in each
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frequency channel (chosen to coincide with atmospheric windows), each with
the same angular resolution. For each array, the ideal antenna size would be
around 300λ in order to retain sensitivity to scales ∼ 10 arcmin by means of
close packing the antennas, while also achieving maximum resolution up to
20 arcsec on the longest baselines ∼ 104λ. Alternatively, multi-frequency bolo-
metric arrays composed of about 1000 elements could achieve similar results if
mounted on a telescope of 50-m class, such as the LMT. Either type of system
could potentially provide the necessary follow-up to Planck SZ detections.

All proposed advances involve large-scale projects and would require a
collaborative effort, perhaps in the form of an “International SZ Observatory”.
Of course this concept requires considerable work to reach the level of a costed
proposal, but it is clear that such an observatory will be required within the
next 10 years in order to take SZ science to the next level, and provide SZ
effect data complementary to the X-ray studies that will be possible with the
next generation of satellite observatories.
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1 Introduction

Clusters of galaxies occupy a special place in the hierarchy of cosmic struc-
tures. They arise from the collapse of initial perturbations having a typical
comoving scale of about 10 h−1Mpc1. According to the standard model of cos-
mic structure formation, the Universe is dominated by gravitational dynamics
in the linear or weakly non–linear regime and on scales larger than this. In this
case, the description of cosmic structure formation is relatively simple since
gas dynamical effects are thought to play a minor role, while the dominating
gravitational dynamics still preserves memory of initial conditions. On smaller
scales, instead, the complex astrophysical processes, related to galaxy forma-
tion and evolution, become relevant. Gas cooling, star formation, feedback
from supernovae (SN) and active galactic nuclei (AGN) significantly change
the evolution of cosmic baryons and, therefore, the observational properties
of the structures. Since clusters of galaxies mark the transition between these
two regimes, they have been studied for decades both as cosmological tools
and as astrophysical laboratories.

In this Chapter I concentrate on the role that clusters play in cosmology.
I will highlight that, in order for them to be calibrated as cosmological tools,
one needs to understand in detail the astrophysical processes which determine
their observational characteristics, i.e. the properties of the cluster galaxy
population and those of the diffuse intra–cluster medium (ICM).

Constraints of cosmological parameters using galaxy clusters have been
placed so far by applying a variety of methods. For example:

1. The mass function of nearby galaxy clusters provides constraints on the
amplitude of the power spectrum at the cluster scale (e.g., [138, 164] and
references therein). At the same time, its evolution provides constraints
on the linear growth rate of density perturbations, which translate into

1 Here h is the Hubble constant in units of 100 km s−1 Mpc−1
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dynamical constraints on the matter and Dark Energy (DE) density pa-
rameters.

2. The clustering properties (i.e., correlation function and power spectrum)
of the large–scale distribution of galaxy clusters provide direct information
on the shape and amplitude of the underlying DM distribution power spec-
trum. Furthermore, the evolution of these clustering properties is again
sensitive to the value of the density parameters through the linear growth
rate of perturbations (e.g., [26, 114] and references therein).

3. The mass-to-light ratio in the optical band can be used to estimate the
matter density parameter, Ωm, once the mean luminosity density of the
Universe is known and under the assumption that mass traces light with
the same efficiency both inside and outside clusters (see [9, 35, 70], as
examples of the application of this method).

4. The baryon fraction in nearby clusters provides constraints on the matter
density parameter, once the cosmic baryon density parameter is known,
under the assumption that clusters are fair containers of baryons (e.g.,
[60, 168]). Furthermore, the baryon fraction of distant clusters provide a
geometrical constraint on the DE content and equation of state, under the
additional assumption that the baryon fraction within clusters does not
evolve (e.g., [6, 58]).

An extensive presentation of all these methods would probably require a
dedicated book. For this reason, in this contribution I will mostly concentrate
on the method based on the evolution of the cluster mass function. A substan-
tial part of my Lecture will concentrate on the different methods that have
been applied so far to weight galaxy clusters. Since all the above cosmological
applications rely on precise measurements of cluster masses, this part of my
contribution will be of general relevance for cluster cosmology.

Also, since most of the cosmological applications of galaxy clusters have
been based so far on X–ray surveys, my discussion will be definitely X–ray
biased, although I will discuss in some detail methods based on optical obser-
vations and what present and future optical surveys are expected to provide.
I refer to the lecture by Roy Gal in this volume for more details regarding
the properties of galaxy clusters in the optical band. Also, I will refer to the
Lectures by M. Birkinshaw for cosmological studies of clusters based on the
Sunyaev–Zel’dovich (SZ) effect, to the Lectures by J.–P. Kneib for cluster
studies and mass measurement through gravitational lensing, and to the Lec-
tures by C. Jones and by C. Sarazin for more details about the cosmological
application of the baryon fraction method.

The structure of this Chapter will be as follows. I provide in Sect. 2 a
short introduction to the basics of cosmic structure formation. I will shortly
review the linear theory for the evolution of density perturbations and the
spherical collapse model. In Sect. 3 I will describe the Press–Schechter (PS)
formalism to derive the cosmological mass function. I will then introduce ex-
tensions of the PS approach and present the most recent calibrations of the
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mass function from N–body simulations. In Sect. 4 I will review the meth-
ods to build samples of galaxy clusters, based on optical and X–ray observa-
tions, while I will only briefly discuss the SZ methodology for cluster surveys.
Section 5 is devoted to the discussion of different methods to derive cluster
masses and to review the results of the application of these methods. In Sect. 6
I will describe the cosmological constraints, which have been obtained so far
by tracing the cluster mass function with a variety of methods: distribution
of velocity dispersions, X–ray temperature and luminosity functions, and gas
mass function. In this Section I will also critically discuss the reasons for the
different, sometimes discrepant, results that have been obtained in the liter-
ature and I will highlight the relevance of properly including the analysis of
the cluster mass function all the statistical and systematic uncertainties in
the relation between mass and observables. Finally, I will describe in Sect. 7
the future perspectives for cosmology with galaxy clusters and which are the
challenges for clusters to keep playing an important role in the era of precision
cosmology.

2 A Concise Handbook of Cosmic Structure Formation

In this section I will briefly review the basic concepts of cosmic structure
formation, which are relevant for the study of galaxy clusters as tools for
precision cosmology through the evolution of their mass function. A complete
treatment of models of structure formation can be found in classical cosmology
textbooks (e.g., [42, 123, 124]).

2.1 The Statistics of Cosmic Density Fields

Let ρ(x) be the matter density field, which is a continuous function of the
position vector x, ρ̄ = 〈ρ 〉 its average value computed over a sufficiently large
(representative) volume of the Universe and

δ(x) =
ρ(x) − ρ̄

ρ̄
(1)

the corresponding relative density contrast. By definition, it is δ̄ = 0 and
δ(x) ≥ −1. If the density field is traced by a discrete distribution of points
(i.e., galaxies or galaxy clusters) all having the same weight (mass), then
ρ(x) =

∑
i δD(x − xi), where δD(x) is the Dirac delta–function. The Fourier

representation of the density contrast is given by

δ̃(k) =
1

(2π)3/2

∫
dx δ(x)eik·x , (2)

with the corresponding dual relation for the inverse Fourier transform.
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The 2–point correlation function for the density contrast is defined as

ξ(r) = 〈δ(x1)δ(x2) 〉 , (3)

which only depends on the modulus of the separation vector, r = |x1 − x2|,
under the assumption of statistical isotropy of the density field. Therefore,
it can be shown that the power spectrum of the density fluctuations is the
Fourier transform of the correlation function, so that

P (k) = 〈 |δ̃(k)|2 〉 =
1

2π2

∫
dr r2ξ(r)

sin kr
kr

, (4)

which, again, depends only on the modulus of the wave-vector k.
In case we are interested in the study of a class of observable structures

of mass M , which arise from the collapse of initial perturbations having size
R ∝ (M/ρ̄)1/3, then it is common to introduce the smoothed density field,
which is defined as

δR(x) = δM(x) =
∫

δ(y)WR(|x − y|) dy . (5)

As such, it is given by the convolution of the density fluctuation field with a
window function, which filters out the fluctuation modes having wavelength
∼< R. Equation (5) allows us to introduce the variance of the fluctuation field
computed at the scale R, defined as

σ2
R = σ2

M = 〈δ2
R 〉 =

1
2π2

∫
dk k2P (k) W̃ 2

R(k) , (6)

where W̃R(k) is the Fourier transform of the window function.
The shape of the window function defines the exact relation between mass

and smoothing scale. For instance, for the top–hat window it is

W̃R(k) =
3[sin(kR) − kR cos(kR)]

(kR)3
(7)

while the Gaussian window gives

W̃R(k) = exp
(
− (kR)2

2

)
, . (8)

The corresponding relations between mass scale and smoothing scale are
M = (4π/3)R3ρ̄ and M = (2πR2)3/2ρ̄ for the top–hat and Gaussian filters,
respectively.

The shape of the power spectrum is (essentially) fixed once the matter
density parameter, Ωm, that associated to the baryonic component, Ωbar, and
the Hubble parameter,H0, are specified (e.g., [53]). However, its normalization
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can only be fixed through a comparison with observational data of the large–
scale structure of the Universe or of the anisotropies of the Cosmic Microwave
Background (CMB). A common way of parametrizing this normalization is
through the quantity σ8, which is defined as the variance, computed for a
top–hat window having comoving radius R = 8 h−1Mpc (given in (6)). The
historical reason for this choice of the normalization scale is that the variance
of the galaxy number counts, within the first redshift surveys, was observed
to be about unity inside spheres of that radius (e.g., [46]). In this way, the
value of σ8 for a given cosmology directly provides a measure of the biasing
parameter relating the galaxy and mass distribution, expected for that model.
Furthermore, a top–hat sphere of 8 h−1Mpc radius contains a mass M �
5.9×1014ΩmM�, which is the typical mass of a moderately rich galaxy cluster.
Therefore, as we shall see in Sect. 3, the mass function of galaxy clusters
provides a direct measure of σ8.

2.2 The Linear Evolution of Density Perturbations

Let us assume that the matter content of the Universe is dominated by a pres-
surless and self–gravitating fluid. This approximation holds if we are dealing
with the evolution of the perturbations in the dark matter (DM) component or
in case we are dealing with structures whose size is much larger than the typ-
ical Jeans scale–length of baryons. Let us also define x to be the comoving co-
ordinate and r = a(t)x the proper coordinate, a(t) being the cosmic expansion
factor. Furthermore, if v = ṙ is the physical velocity, then v = ȧx + u, where
the first term describes the Hubble flow, while the second term, u = a(t)ẋ,
gives the peculiar velocity of a fluid element which moves in an expanding
background.

In this case the equations that regulate the Newtonian description of the
evolution of density perturbations are the continuity equation:

∂δ

∂t
+ ∇ · [(1 + δ)u] = 0 , (9)

which gives the mass conservation, the Euler equation

∂u
∂t

+ 2H(t)u + (u · ∇)u = −∇φ

a2
, (10)

which gives the relation between the acceleration of the fluid element and the
gravitational force, and the Poisson equation

∇2φ = 4πGρ̄a2δ (11)

which specifies the Newtonian nature of the gravitational force. In the above
equations, ∇ is the gradient computed with respect to the comoving coor-
dinate x, φ(x) describes the fluctuations of the gravitational potential and
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H(t) = ȧ/a is the Hubble parameter at the time t. Its time–dependence is
given by H(t) = E(t)H0, where

E(z) = [(1 + z)3Ωm + (1 + z)2(1 − Ωm − ΩDE) + (1 + z)3(1+w)ΩDE]1/2 (12)

is related to the density parameter contributed by non–relativistic matter,
Ωm, and by Dark Energy (DE), ΩDE, with equation of state p = wρc2 (if the
DE term is provided by cosmological constant then w = −1).

In the case of small perturbations, these equations can be linearized by
neglecting all the terms which are of second order in the fields δ and u. In this
case, after further differentiating (9) with respect to time, using the Euler
equation to eliminate the term ∂u/∂t, and using the Poisson equation to
eliminate ∇2φ, one ends up with:

∂2δ

∂t2
+ 2H(t)

∂δ

∂t
− 4πGρ̄δ = 0 . (13)

This equation describes the Jeans instability of a pressurless fluid, with the ad-
ditional “Hubble drag” term 2H(t)∂δ/∂t, which describes the counter–action
of the expanding background on the perturbation growth. Its effect is to pre-
vent the exponential growth of the gravitational instability taking place in a
non–expanding background [14]. The solution of the above equation can be
casted in the form:

δ(x, t) = δ+(x, ti)D+(t) + δ−(x, ti)D−(t) , (14)

where D+ and D− describes the growing and decaying modes of the density
perturbation, respectively. In the case of an Einstein–de-Sitter (EdS) Uni-
verse (Ωm = 1, ΩDE = 0), it is H(t) = 2/(3t), so that D+(t) = (t/ti)2/3 and
D−(t) = (t/ti)−1. The fact that D+(t) ∝ a(t) for an EdS Universe should not
be surprising. Indeed, the dynamical time–scale for the collapse of a perturba-
tion of uniform density ρ is tdyn ∝ (Gρ)−1//2, while the expansion time scale
for the EdS model is texp ∝ (Gρ̄)−1//2, where ρ̄ is the mean cosmic density.
Since for a linear (small) perturbation it is ρ � ρ̄, then tdyn ∼ texp, thus show-
ing that the cosmic expansion and the perturbation evolution take place at
the same pace. This argument also leads to understanding the behaviour for
a Ωm < 1 model. In this case, the expansion time scale becomes shorter than
the above one at the redshift at which the Universe recognizes that Ωm < 1.
This happens at 1 + z � Ω−1/3

m or at 1 + z � Ω−1
m in the presence or absence

of a cosmological constant term, respectively. Therefore, after this redshift,
cosmic expansion takes place at a quicker pace than gravitational instability,
with the result of freezing the perturbation growth.

The exact expression for the growing model of perturbations is given by

D+(z) =
5
2

ΩmE(z)
∫ ∞

z

1 + z′

E(z′)3
dz′ (15)
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Fig. 1. The redshift dependence of the linear growth mode of perturbations for a
flat model with Ωm = 1 (solid curve), for a flat Ωm = 0.3 model with a cosmo-
logical constant (dashed curve) and for an Ωm = 0.3 open model with vanishing
cosmological constant (dotted curve)

(e.g., [124]). I show in Fig. 1 the redshift dependence of the linear growth factor
for an Eds model and for two models with Ωm = 0.3 both with and without
a cosmological constant term to restore spatial flatness. Quite apparently,
the EdS has the faster evolution, while the slowing down of the perturbation
growth is more apparent for the open low–density model, the presence of
cosmological constant providing an intermediate degree of evolution. A more
pictorial view is provided in Fig. 2, where we show the dark matter density
fields for two different cosmologies and at different epochs, as obtained from
N–body simulations. The two models, an EdS one and a flat low–density
one with Ωm = 0.3, have been tuned so as to have a similar appearance at
z = 0. This figure clearly shows that any observational probe of the degree
of evolution of density perturbations would correspond to a sensitive probe
of cosmological parameters. Such a cosmological test is conceptually different
to those provided by the standard geometrical tests based on luminosity and
angular–size distances.

As we shall discuss in the following, clusters of galaxies provide such a
probe, since the evolution of their number density is directly related to the
growth rate of perturbations.
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Fig. 2. The evolution of the cluster population from N–body simulations in two
different cosmologies [26]. Left panels describe a flat, low–density model with Ωm =
0.3 and ΩΛ = 0.7 (L03); right panels are for an Einstein–de-Sitter model (EdS) with
Ωm = 1. Superimposed on the dark matter distribution, the yellow circles mark
the positions of galaxy clusters with virial temperature T > 3 keV, the size of the
circles is proportional to temperature. Model parameters have been chosen to yield
a comparable space density of clusters at the present time. Each snapshot is 250 h−1

Mpc across and 75 h−1 Mpc thick (comoving with the cosmic expansion)
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2.3 The Spherical Top-Hat Collapse

A spherical perturbation at constant density represents the only case in which
the evolution can be exactly computed. Although the assumptions on which
this model is based are quite restrictive, nevertheless it serves as a very use-
ful guideline to characterize the process of evolution and formation of viri-
alized DM halos. This approach is based on treating the perturbation as a
separate Friedmann–Lemaitre–Robertson–Walker (FLRW) universe, with the
constraint of null velocity at the boundary of the perturbation. Here we will
sketch the derivation in the case of Ωm = 1 (e.g., [42], while an extension of
this derivation to more general cosmologies can be found in [54] and [93], with
useful fitting functions provided in [31].

Assuming null velocities at an initial time ti provides the relation D+(ti) =
(3/5)δ(ti), between the linear growth mode of the perturbation and the initial
overdensity. The initial density parameter, which characterizes this separate
Universe, is then Ωp(ti) = Ω(ti)(1 + δi). Therefore, the condition for the
perturbation to re-collapse will be Ωp(ti) > 1. If this condition is satisfied,
then we can derive the density within the perturbation at the time tm of its
maximum expansion (turn–around) as

ρp(tm) = ρc(ti)Ωp(ti)
[
Ωp(ti) − 1

Ωp(ti)

]3
. (16)

The time tm is given by the solution of the Friedmann equations for a closed
Universe:

tm =
π

2Hi

Ωp(ti)

[Ωp(ti) − 1]3/2
=
[

3π
32Gρp(tm)

]1/2

, (17)

where Hi is the Hubble parameter within the perturbation. At the same epoch
tm, the density of the general cosmic background is ρ(tm) = (6πGt2m)−1.
Therefore, the exact value for the perturbation overdensity at the turn–
around is

δ+(tm) =
ρp(tm)
ρ(tm)

− 1 =
(

3π
4

)2

− 1 � 4.6 . (18)

On the other hand, the linear–theory extrapolation to tm would give

δ+(tm) = δ+(ti)
(
tm
ti

)2/3

=
3
5

(
3π
4

)2/3

� 1.07 . (19)

This demonstrates that the linear–theory extrapolation significantly underes-
timates overdensities at the turn-around.

After reaching the maximum expansion, the perturbation then evolves by
detaching from the general Hubble expansion and then re-collapses, reaching
virial equilibrium supported by the velocity dispersion of DM particles. This
happens at the virialization time tvir, at which the perturbation meets by
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definition the virial condition E = K+U = −K, being E, K and U the total,
the kinetic and the potential energy, respectively.

At the turn–around point, the perturbation has no kinetic energy, so that
the total energy is

Em = U = −3
5
GM2

Rm
, (20)

where we have used the expression for the potential energy of a uniform spher-
ical density field of radius Rm and total mass M . In a similar manner, the
total energy at the virialization is

Evir =
U

2
= −1

2
3
5
GM2

Rvir
. (21)

Therefore, the condition of energy conservation in a dissipationless collapse
gives Rm = 2Rvir for the relation between the radii at turn-around and at
virial equilibrium. This allows us to compute the overdensity at tvir as

ρp(tvir)
ρ(tvir)

=
(
tvir

tm

)2(
Rm

Rvir

)3
ρp(tm)
ρ(tm)

= 2223

(
3π
4

)2

= 18π2 � 178 , (22)

where we have accounted for both the compression of the perturbation density,
due to its shrinking, and of the dilution of the background density as the
Universe expands from tm to tvir. Equation (22) shows why an overdensity of
about 200 is usually considered as typical for a DM halo which has reached
the condition of virial equilibrium. As for the extrapolation of linear–theory
prediction, it would have given

δ+(tvir) =
(
tvir

tm

)2/3

δ+(tm) � 1.69 . (23)

The above equation shows the derivation of another fundamental number that
will be used in what follows in order to characterize the mass function of viri-
alized halos. It gives the overdensity that a perturbation in the initial density
field must have for it to end up in a virialized structure. While the above
derivation holds for an EdS Universe, it can be generalized to any generic
cosmology. For Ωm < 1 the increased expansion rate of the Universe causes a
faster dilution of the cosmic density from tm to tvir and, as a consequence, a
larger value of the overdensity at virialization.

In the following, we will indicate with Δvir the overdensity at virial equi-
librium, computed with respect to the background density, and with Δc the
same quantity expressed in units of the critical density ρc. As a reference, a
flat low–density model with Ωm = 0.3 has Δc � 100 and Δvir � 330. Also,
we will use in the following the notation RN to indicate the radius of a halo
encompassing an average overdensity equal to Nρc, so that MN will denote
the halo mass contained within that radius. As we shall see in the following,
values often used in the literature are N = 200, 500 and 2500.
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3 The Mass Function

The mass function (MF) at redshift z, n(M, z), is defined as the number
density of virialized halos found at that redshift with mass in the range
[M,M + dM ]. In this section I will derive the MF expression following the
approach originally devised by Press and Schechter [132] (PS hereafter). After
commenting on the limitations of this approach, I will discuss the accuracy
with which improved derivations of the MF reproduce the “exact” predictions
from N-body simulations.

3.1 The Press-Schechter Mass Function

The PS derivation of the MF is based on the assumption that the fraction of
matter ending up in objects of a given mass M can be found by looking at
the portion of the initial (Lagrangian) density field, smoothed on the mass–
scale M , lying at an overdensity exceeding a given critical threshold value,
δc. Under the assumption of Gaussian perturbations, the probability for the
linearly-evolved smoothed field δM to exceed at redshift z the critical density
contrast δc reads

p>δc(M, z) =
1√

2πσM (z)

∫ ∞

δc

exp
(
− δ2

M

2σM (z)2

)
dδM =

1
2
erfc
(

δc√
2σM (z)

)
,

(24)
where erfc(x) is the complement error function and σM (z) = δ+(z)σM is the
variance at the mass scale M linearly extrapolated at redshift z. Under the
assumption of spherical collapse, the critical overdensity δc is given by the
linear extrapolation of the overdensity at virial equilibrium, as derived in the
previous section. In this case, it will be δc = δc(z) with a weak dependence
upon redshift and cosmological parameters, with δc � 1.69 independent of
z only in the case of an EdS cosmology. By definition, the above equation
provides the fraction of unity volume, which ends up by redshift z in objects
with mass above M . Therefore, the fraction of Lagrangian volume in objects
with mass in the range [M,M + dM ] is

dp>δc(M, z) =
∣∣∣∣∂p>δc(M, z)

∂M

∣∣∣∣ dM . (25)

Since the probability of (24) is a decreasing function of mass, the absolute
value is required in order to have a positive–defined differential probability.
Equation (25) shows a fundamental limitation of the PS derivation of the MF.
Indeed, we expect that, as we take the limit of arbitrarily small limiting mass,
we should recover the whole mass content of the Universe. This is to say that,
in the hierarchical clustering picture, all the mass is contained within halos of
arbitrarily small mass. However, integrating (25) over the whole mass range
gives

∫∞
0

dp>δc(M, z) = 1/2. This implies that the PS derivation of the mass
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function only accounts for half of the total mass at disposition. The basic
reason for this is that, in this derivation, we give zero probability for a point
with δM < δc, for a given filtering mass scale M , to have δM ′ > δc for some
larger filtering scale M ′ > M . This means that the PS approach neglects the
possibility for that point to end up in a collapsed halo of larger mass. A more
rigorous derivation of the mass function, which is based on the excursion–
set formalism [23], correctly accounts for the missing factor 2, at least for the
particular choice of a sharp–k filter (i.e., a top–hat window function in Fourier
space).

Since (25) provides the fraction of volume in objects of a given mass,
the number density of such objects will be obtained after dividing it by the
volume, VM = M/ρ̄, occupied by each object. Therefore, after accounting for
the missing factor 2, the expression for the mass function reads

dn(M, z)
dM

=
2
VM

∂p>δc(M, z)
∂M

=

√
2
π

ρ̄

M2

δc

σM (z)

∣∣∣∣d log σM (z)
d logM

∣∣∣∣ exp
(
− δ2

c

2σM (z)2

)
. (26)

This is the expression for the PS mass function. Although we will present
below a more accurate expressions for the MF, this equation already demon-
strates the reason for which the mass function of galaxy clusters is a powerful
probe of cosmological models. Cosmological parameters enter in (26) through
the mass variance σM , which depends on the power spectrum and on the cos-
mological density parameters, through the linear perturbation growth factor,
and, to a lesser degree, through the critical density contrast δc. Taking this
expression in the limit of massive objects (i.e., rich galaxy clusters), the MF
shape is dominated by the exponential tail. This implies that the MF becomes
exponentially sensitive to the choice of the cosmological parameters. In other
words, a reliable observational determination of the MF of rich clusters would
allow us to place tight constraints on cosmological parameters.

3.2 Extensions of the PS Approach and N-body Tests

Following [89], an alternative way of recasting the mass function is

f(σM , z) =
M

ρ̄

dn(M, z)
d lnσ−1

M

. (27)

In this way, the PS expression is recovered by setting

f(σM , z) =

√
2
π

δc

σM
exp
(
− δ2

c

2σ2
M

)
(28)

Despite its subtle simplicity (e.g., [112]), the PS MF has served for more
than a decade as a guide to constrain cosmological parameters from the mass
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distribution of galaxy clusters. Only with the advent of a new generation of
N–body simulations, which are able to cover a very large dynamical range,
have significant deviations of the PS expression from the exact numerical
description been noticed (e.g., [59, 76, 77, 89, 150, 165]). Such deviations have
been usually interpreted in terms of corrections to the PS approach.

Incorporating the effect of non–spherical collapse, the PS expression has
been generalized [146] to

f(σM , z) =

√
2a
π
C

[
1 +
(
σ2

M

aδ2
c

)q]
δc

σM
exp
(
− aδ2

c

2σ2
M

)
. (29)

These authors also compared this expression with results from N–body sim-
ulations, in which the mass of the clusters were estimated with a spherical
overdensity (SO) algorithm, by computing the mass within the radius encom-
passing a mean overdensity equal to the virial one. As a result, they found
the best-fitting values a = 0.707, q = 0.3, with the normalization constant
C = 0.3222 obtained from the normalization requirement

∫∞
0 f(σM )dν = 1

(note that the PS expression is recovered for a = 1, q = 0 and C = 1/2; see
also [147]).

Jenkins et al. [89] proposed an alternative expression for the mass function:

f(σM , z) = 0.315 exp(−| lnσ−1
M + 0.61|3.8) , (30)

which has been obtained as the best fit to the results of a combination of
different simulations, covering a wide dynamical range. More recently, Springel
et al. [150] used the largest available single N–body simulation to verify in
detail the accuracy of (30). The result of this comparison, which is reported
in Fig. 3, demonstrates that this mass function reproduces remarkably well
numerical results over a wide range of sampled halo masses and redshifts,
thereby representing a substantial improvement with respect to the PS mass
function. The accuracy of (30) in reproducing results of numerical experiments
has been also discussed in [59], where it is also pointed out the role of different
algorithms to identify clusters and to estimate their mass in simulations, in
[166], where the universality of this expression for a generic cosmology is
discussed, and in [165], where the widest dynamical range to date has been
samples by combining a series of N-body simulations.

In practical applications, the observational mass function of clusters is usu-
ally determined over about one decade in mass. Therefore, it probes the power
spectrum over a relatively narrow dynamical range, and does not provide
strong constraints on the shape of the power spectrum. Using only the number
density of nearby clusters of a given mass M , one can constrain the amplitude
of the density perturbation at the physical scale R ∝ (M/Ωmρcrit)1/3 which
contains this mass. Since such a scale depends both on M and on Ωm, the
mass function of nearby (z∼< 0.1) clusters is only able to constrain a relation
between σ8 and Ωm. In the left panel of Fig. 4 we show that, for a fixed value
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of the observed cluster mass function, the implied value of σ8 from (29) in-
creases as the density parameter decreases. Determinations of the cluster mass
function in the local Universe using a variety of samples and methods indi-
cate that σ8Ωα

m = 0.4 − 0.6, where α � 0.4 − 0.6, almost independent of the
presence of a cosmological constant term providing spatial flatness. As for the
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evolution with redshift, the growth rate of the density perturbations depends
primarily on Ωm and, to a lesser extent, on ΩΛ, at least out to z ∼ 1, where
the evolution of the cluster population is currently studied. Therefore, follow-
ing the evolution of the cluster space density over a large redshift baseline,
one can break the degeneracy between σ8 and Ωm. This is shown in a pictorial
way in Fig. 2 and quantified in the right panel of Fig. 4: models with different
values of Ωm, which are normalized to yield a comparable number density of
nearby clusters, predict cumulative mass functions that progressively differ by
up to orders of magnitude at increasing redshifts.

Although (30) provides a very accurate and flexible tool to constrain the
parameter space of cosmological models using the mass function of collapsed
halos, nevertheless a further source of uncertainty may arise from the effect
of cosmic variance. Fluctuations modes, with wavelength exceeding the size
of the volumes sampled by observations, induces appreciable changes in the
number counts of halos of a given mass. This effect has been thoroughly dis-
cussed in [87, 166]. In the right panel Fig. 3 (from [166]) I report the relative
variation of the power spectrum normalization, σ8, induced by cosmic vari-
ance, as a function of the sample size, for halos having two different mass
limits. As expected, the variance decreases with the sample size (fluctuations
on larger scales have a smaller effect), while it increases with the halo mass (the
distribution of rarer objects suffer for a more pronounced large–scale modu-
lation). This result demonstrates that a precision calibration of cosmological
parameters requires properly accounting for the effect of cosmic variance.

4 Building a Cluster Sample

4.1 Identification in the Optical / Near IR Band

Abell [1] provided the first extensive, statistically complete sample of galaxy
clusters, later extended to the Southern hemisphere [2]. Based on purely vi-
sual inspection, clusters were identified as enhancements in the galaxy surface
density and were characterized by their richness and estimated distance. The
Abell catalog has been for decades the prime source for detailed studies of in-
dividual clusters and for characterizing the large scale distribution of matter
in the nearby Universe. Several variations of the Abell criteria defining clus-
ters were used in an automated and objective fashion when digitized optical
plates became available (e.g., [45, 102]). Deep optical plates were used suc-
cessfully to search for more distant clusters, out to z � 0.9, with purely visual
techniques (e.g., [43, 78]). These searches for distant clusters became much
more effective with the advent of CCD imaging. Postman et al. [131] were
the first to carry out a V&I-band survey over 5 deg2 (the Palomar Distant
Cluster Survey, PDCS). This technique enhances the contrast of galaxy over-
density at a given position, utilizing prior knowledge of the luminosity profile
typical of galaxy clusters. Dalcanton [44] proposed another method of optical
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selection of clusters, in which drift scan imaging data from relatively small
telescopes is used to detect clusters as positive surface brightness fluctuations
in the background sky. Gonzalez et al. [75] applied a technique based on sur-
face brightness fluctuations from drift scan imaging data to build a sample of
∼1000 cluster candidates over 130 deg2.

A common feature of all these methods of cluster identification is that they
classify clusters according to definitions of richness, which generally have a
loose relation with the actual cluster mass. This represents a serious limitation
for any cosmological application, which requires the observable, on which the
cluster selection is based, to be a reliable proxy of the cluster mass.

An improved definition of richness, based on the amplitude of the galaxy–
cluster cross–correlation function, has been applied [74] to clusters identified in
a large area survey in R and z bands (the Red Sequence Cluster Survey). This
survey, whose optical and X-ray follow-up, is currently underway, promises to
unveil a fairly large number of clusters out to z ∼ 1.5.

By increasing the number of observed passbands and using red colors one
can increase the contrast with which clusters are seen in color space. In this
way, one can increase the efficiency of cluster selection also at high redshift
(e.g., [74, 151, 152]) and the accuracy of their estimated redshifts through
spectro-photometric techniques. In this way, Miller et al. [111] designed a
cluster-finding algorithm which makes full use of information of both posi-
tion and color space to detect clusters of galaxies from the SDSS. They were
able to identify about 750 clusters out to z∼< 0.2, and assessed the degree of
completeness by resorting to a comparison with mock SDSS surveys extracted
from large N–body simulations. Once completed, the search of clusters over
the entire SDSS sample will provide about 2500 nearby and medium–distant
objects. At the same time the next generation of wide field (> 100 deg2)
deep multicolor surveys in the optical and especially the near-infrared will
powerfully enhance the search for distant clusters, out to z∼> 1.

4.2 Identification in the X-ray Band

Already from the first pioneering attempts to map the X-ray sky ( [66],
see [138] for a historical review), clusters were associated with extended
sources, whose dominant emission mechanism was recognized to be ther-
mal bremsstrahlung from optically thin plasma at a temperature of several
keV [40, 61]. The all-sky survey conducted by the the HEAO-1 X-ray Observa-
tory was the first to provide a flux–limited sample of X-ray identified clusters,
for which both the flux number counts and the X-ray luminosity function have
been computed for the first time [126]. However, it is only thanks to the much
improved sensitivity of the Einstein Observatory [65] that X-ray surveys were
recognized as an efficient means of constructing samples of galaxy clusters out
to cosmologically interesting redshifts.

First, the X-ray selection has the advantage of revealing physically-bound
systems, because diffuse emission from a hot ICM is the direct manifestation of
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the existence of a potential-well within which the gas is in dynamical equilib-
rium with the cool baryonic matter (galaxies) and the dark matter. Second,
the X-ray luminosity is well correlated with the cluster mass (see Fig. 11).
Third, the X-ray emissivity is proportional to the square of the gas density,
hence cluster emission is more concentrated than the optical bidimensional
galaxy distribution. In combination with the relatively low surface density
of X-ray sources, this property makes clusters high contrast objects in the
X-ray sky, and alleviates problems due to projection effects that affect opti-
cal selection. Finally, an inherent fundamental advantage of X-ray selection is
the ability to define flux-limited samples with well-understood selection func-
tions. This leads to a simple evaluation of the survey volume and therefore
to a straightforward computation of space densities. Nonetheless, there are
some important caveats described below. Pioneering work in this field [67, 84]
was based on the Einstein Observatory Extended Medium Sensitivity Survey
(EMSS). The EMSS survey covered over 700 square degrees and lead to the
construction of a flux-limited sample of 93 clusters out to z = 0.58, allowing
the cosmological evolution of clusters to be investigated.

The ROSAT satellite, launched in 1990, allowed a significant step for-
ward in X-ray surveys of clusters. The ROSAT All-Sky Survey (RASS, [155])
was the first X-ray imaging mission to cover the entire sky, thus paving the
way to large contiguous-area surveys of X-ray selected nearby clusters. In the
northern hemisphere, the largest compilations with virtually complete optical
identification include, the Bright Cluster Sample (BCS, [51]), and the North-
ern ROSAT All Sky Survey (NORAS, [22]). In the southern hemisphere, the
ROSAT-ESO flux limited X-ray (REFLEX) cluster survey [21] has completed
the identification of 452 clusters, the largest, homogeneous compilation to
date. The Massive Cluster Survey (MACS, [52]) is aimed at targeting the
most luminous systems at z > 0.3 which can be identified in the RASS at the
faintest flux levels. The deepest area in the RASS, the North Ecliptic Pole
(NEP, [85]) which ROSAT scanned repeatedly during its All-Sky survey, was
used to carry out a complete optical identification of X-ray sources over a 81
deg2 region. This study yielded 64 clusters out to redshift z = 0.81.

In total, surveys covering more than 104 deg2 have yielded over 1000 clus-
ters, out to redshift z � 0.5. A large fraction of these are new discoveries,
whereas approximately one third are identified as clusters in the Abell or
Zwicky catalogs. For the homogeneity of their selection and the high degree of
completeness of their spectroscopic identifications, these samples are now the
basis for a large number of follow-up investigations and cosmological studies.

Besides the all-sky surveys, the ROSAT-PSPC archival pointed obser-
vations were intensively used for serendipitous searches of distant clusters.
These projects, which are now completed, include: the RIXOS survey [38],
the ROSAT Deep Cluster Survey (RDCS, [138, 139]), the Serendipitous High-
Redshift Archival ROSAT Cluster survey (SHARC, [32], the Wide Angle
ROSAT Pointed X-ray Survey of clusters (WARPS, [125]), the 160 deg2

large area survey [117], the ROSAT Optical X-ray Survey (ROXS, [49]).
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ROSAT-HRI pointed observations have also been used to search for distant
clusters in the Brera Multi-scale Wavelet catalog (BMW, [113]).

In Fig. 5, we give an overview of the flux limits and surveyed areas of
all major cluster surveys carried out over the last two decades. RASS-based
surveys have the advantage of covering contiguous regions of the sky so that
the clustering properties of clusters (e.g., [143]) can be investigated. They
also have the ability to unveil rare, massive systems albeit over a limited
redshift and X-ray luminosity range. Serendipitous surveys which are at least
a factor of ten deeper but cover only a few hundreds square degrees, provide
complementary information on lower luminosities, more common systems and
are well suited for studying cluster evolution on a larger redshift baseline.

A number of systematic studies have been carried out to compare the
nature of clusters identified with the optical and the X–ray technique (e.g.,
[13, 48, 129]). The general conclusion of these studies is that optically selected

10–15

10–16

0.1 1 10
Area (deg2)

CDF

XMM/LH
CHANDRA/XMM

Surveys

RDCS

NEP

ROXS

RIXOS
SHARC–S WARPS

160 deg2

BMW

Bright–SHARC

EMSS

MACS

BCS
REFLEX
NORAS

HEAO–1

102 103 104 105

A
LL

 S
K

Y

10–14

10–13

10–12

10–11

10–10

F
lu

x 
lim

it 
[0

.5
 –

 2
.0

 k
ev

] e
rg

 c
m

–2
 s

–1

Fig. 5. Solid angles and flux limits of X-ray cluster surveys carried out over the last
two decades. Dark filled circles represent serendipitous surveys constructed from a
collection of pointed observations. Light shaded circles represent surveys covering
contiguous areas. The hatched region is a predicted locus of current serendipitous
surveys with Chandra and Newton-XMM. From [138]



Clusters and Cosmology 305

clusters are on average underluminous in the X-ray band. This suggests that
optical selection tends to pick up objects which have not yet reached a high
enough density to make the ICM lighting up in X–rays.

In order for a survey to be used for cosmological applications, one needs
to know not only how many clusters it contains, but also the volume within
which each of them is found. In other words, one needs to define the selection
function of the survey, which depends on the survey strategy and on the details
of the adopted cluster finding algorithm (see [138], for a review). An essential
ingredient for the evaluation of the selection function of X-ray surveys is the
computation of the sky coverage: the effective area covered by the survey as a
function of flux. In general, the exposure time, as well as the background and
the PSF are not uniform across the field of view of X-ray telescopes, which
introduces vignetting and a degradation of the PSF at increasing off-axis
angles. As a result, the sensitivity to source detection varies significantly across
the survey area so that only bright sources can be detected over the entire solid
angle of the survey, whereas at faint fluxes the effective area decreases. An
example of survey sky coverage is given in the left panel of Fig. 6. By covering
different solid angles at varying fluxes, these surveys probe different volumes
at increasing redshift and therefore different ranges in X-ray luminosities at
varying redshifts.

Once the survey flux-limit and the sky coverage are defined one can com-
pute the maximum search volume, Vmax, within which a cluster of a given
luminosity is found in that survey:

Vmax =
∫ zmax

0

S[f(L, z)]
(
dL(z)
1 + z

)2
c dz
H(z)

. (31)
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Here S(f) is the survey sky coverage, which depends on the flux f = L/(4πd2
L),

dL(z) is the luminosity distance, and H(z) is the Hubble constant at z. We
define zmax as the maximum redshift out to which the flux of an object of
luminosity L lies above the flux limit. The corresponding survey volumes are
shown in the right panel of Fig. 6.

Once again, I emphasize that one of the main advantages of the X–ray
selection lies in the fact that the survey selection function can be precisely
computed, thus allowing reliable comparisons between the observed and the
predicted evolution of the cluster population.

4.3 Identification Through the SZ Effect

The Sunyaev–Zel’dovich (SZ) effect [154] allows to observe galaxy clusters
by measuring the distortion of the CMB spectrum owing to the hot ICM.
This method does not depend on redshift and provides in principle a reliable
estimate of cluster masses. For these reasons, it is now considered as one of
the most powerful means to find distant clusters in the years to come. For a
detailed discussion of the SZ technique for cluster identification and for the
ongoing and future surveys, I refer to the lectures by Mark Birkinshaw and to
the reviews in [15, 37]. For the purpose of the present discussion, I show in the
left panel of Fig. 7 a comparison between the limiting mass as a function of
redshift, expected for a X–ray and for a SZ cluster survey (from [80]). While
the standard flux dimming with the luminosity distance, fX ∝ d2

L(z), causes
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the limiting mass to quickly increase with distance for the X–ray selection,
this limiting mass has a much less sensitive dependence on redshift for the
SZ selection. This is the reason why SZ surveys are generally considered as
essentially providing mass–limited cluster samples.

It has been recently pointed out [115] that the integrated SZ flux–
decrement has a very tight correlation with the total cluster mass (see also
[47]). This fact, joined with the redshift–independence of the SZ selection,
makes the SZ identification a promising route toward precision cosmology
with galaxy clusters.

A potential problem with the SZ identification of clusters resides in the
possible contamination of the signal from foreground/background structures.
Diffuse gas, residing in large–scale filaments, are likely to provide a negligible
contamination, as a consequence of the comparatively low density and tem-
perature which characterize such structures. However, small halos, which are
expected to be present in large number, contain gas at the virial overdensity.
Since they are not resolved in current SZ observations, their integrated con-
tribution may provide a significant contamination. Using cosmological hydro-
dynamical simulations, White et al. [167] have created SZ sky maps with the
aim of correlating the SZ signal seen in projection with the actual mass of
clusters.The result of this test is shown in the right panel of Fig. 7. The upper
panel shows the relation between the integrated SZ signal contributed only
from the gas within 0.5R200 and M200, while the lower panel is when using the
actual Compton-y parameter measured from the projected maps. Quite appar-
ently, the scatter in the relation is significantly increased in projection. Part of
the scatter is due to the different redshifts at which clusters seen in projection
are placed. This contribution to the scatter can be removed once redshifts of
clusters are known from follow–up optical observations. However, a significant
contribution to the overall scatter is contributed by cluster asphericity and by
contamination from fore/background structures. This highlights the relevance
of keeping this scatter under control for a full exploitation of the SZ signal as
a tracer of the cluster mass.

5 Methods to Estimate Cluster Masses

5.1 The Hydrostatic Equilibrium

The condition of hydrostatic equilibrium determines the balance between the
pressure force and the gravitational force: ∇Pgas = −ρgas∇φ, where Pgas and
ρgas are the gas pressure and density, respectively, while φ is the underlying
gravitational potential. Under the assumption of a spherically symmetric gas
distribution, the above equations read:

dPgas

dr
= −ρgas

dφ
dr

= −ρgas
GM(< r)

r2
, (32)
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where r is the radial coordinate (cluster-centric distance) and M(< r) is the
total mass contained within r. Using the equation of state of ideal gas to relate
pressure to gas density and temperature, the mass is then given by

M(< r) = − r

G

kBT

μmp

(
d ln ρgas

d ln r
+

d lnT

d ln r

)
, (33)

where μ is the mean molecular weight of the gas (μ � 0.59 for primordial
composition) and mp is the proton mass. An often used mass estimator is
based on assuming the β–model for the gas density profile,

ρgas(r) =
ρ0

[1 + (r/rc)2]
3β/2

(34)

[39]. In the above equation, rc is the core radius, while β is the ratio between
the kinetic energy of any tracer of the gravitational potential (e.g. galaxies)
and the thermal energy of the gas, β = μmpσ

2
v/(kBT ) (σv : one–dimensional

velocity dispersion). By further assuming a polytropic equation of state, ρgas ∝
P γ

gas (γ: polytropic index), (33) becomes

M(< r) � 1.11 × 1014βγ
T (r)
keV

r

h−1Mpc
(r/rc)2

1 + (r/rc)2
M� , (35)

where T (r) is the temperature at the radius r. In its original derivation, the
β–model was aimed at representing the distribution of isothermal gas sitting
in hydrostatic equilibrium within a King–like potential. The corresponding
mass estimator is recovered from (35) by setting γ = 1 and replacing T (r)
with the global ICM temperature, T0. In the absence of accurately resolved
temperature profiles from X–ray observations, (35) has been used to estimate
cluster masses both in its isothermal (e.g., [136]) and in its polytropic form
(e.g., [56, 62, 120]).

Thanks to the much improved sensitivity of the Chandra and XMM–
Newton X–ray observatories, temperature profiles are now resolved with high
enough accuracy to allow the application of more general methods of mass
estimation (providing tight M–Lx relations; see for example Fig. 8), not nec-
essarily bound to the assumptions of β–model and of an overall polytropic
form for the equation of state (e.g., [5, 8, 56, 160]).

An alternative way of recasting the isothermal version of (35) between
temperature and mass is based on expressing the mass according to the virial
theorem as Mvir = σ2

vRvir/G, so that

kBT =
1.38
β

(
Mvir

1015M�

)3/2

[ΩmΔvir(z)]
1/3 (1 + z) keV . (36)

This expression, originally introduced in [54], has been sometimes used to
express the M–T relation as obtained from hydrodynamical simulations of
galaxy clusters (e.g., [25, 31]).
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It is clear that the two crucial assumptions underlying any mass measure-
ments based on the ICM temperature concerns the existence of hydrostatic
equilibrium and of spherical symmetry. While effects of non–spherical geom-
etry can be averaged out by performing the analysis over a large enough
number of clusters, the former can lead to systematic biases in the mass
estimates (e.g., [133]) and references therein). So far, ICM temperature mea-
surements have been based on fits of the observed X–ray spectra of clusters
to plasma models, which are dominated at high temperatures by thermal
bremsstrahlung. However, local deviations from isothermality, e.g. due to the
presence of merging cold gas clumps, can bias the spectroscopic temperature
with respect to the actual electron temperature (e.g., [108, 110, 159]). This
bias directly translates into a comparable bias in the mass estimate through
hydrostatic equilibrium (see Sect. 7, below).

5.2 The Dynamics of Member Galaxies

From a historical point of view, the dynamics traced by member galaxies, has
been the first method applied to measure masses of galaxy clusters [148, 171].
Under the assumption of virial equilibrium, the mass of the cluster can be
estimated by knowing position and redshift for a high enough number of
member galaxies:

M =
π

2
3σ2

vRV

G
(37)

(e.g., [99]), where the first factor accounts for the geometry of projection,
σr is the line-of-sight velocity dispersion and RV is the virialization radius,
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which depends on the positions of the galaxies with measured redshifts and
recognized as true cluster members:

RV = N2

⎛
⎝∑

i>j

r−1
ij

⎞
⎠

−1

, (38)

where N is the total number of galaxies, and rij the projected separation
between the i-th and j-th galaxies. This method has been extensively applied
to measure masses for statistical samples of both nearby (e.g., [16, 17, 71, 130,
137]) and distant (e.g., [36, 73]) clusters.

Besides the assumption of virial equilibrium, which may be fulfilled to dif-
ferent degrees by different populations of galaxies (e.g., late vs. early type),
a crucial aspect in the application of the dynamical mass estimator concerns
the rejection of interlopers, i.e. of back/foreground galaxies which lie along
the line-of-sight of the cluster without belonging to it. A spurious inclusion
of non–member galaxies in the analysis leads in general to an overestimate
of the velocity dispersion and, therefore, of the resulting mass. A number
of algorithms have been developed for interlopers rejection, whose reliability
must be judged on a case-by-case basis (e.g., [68, 156]). A further poten-
tial problem of this analysis concerns the possibility of realizing a uniform
sampling of the cluster potential using galaxies with measured redshifts. For
instance, the technical difficulty of packing slits or fibers in optical spectro-
scopic observations may lead to an undersampling of the cluster central re-
gions. In turn, this leads to an overestimate of RV and, again, of the collapsed
mass.

Tests of the accuracy of mess estimates based on the dynamical virial
method have been performed by using hydrodynamical simulations of galaxy
clusters, in which galaxies are identified from gas cooling and star forma-
tion [18, 63]. For instance, [18] have shown that galaxies identified in the
simulations are fair tracers of the underlying dynamics, with no systematic
bias in the estimate of cluster masses, although a rather large scatter between
true and recovered masses is induced mostly by projection effects.

Quite reassuringly, despite all the assumptions and possible systematics
affecting both dynamical optical and X-ray mass estimates, these two methods
provide in general fairly consistent results for both nearby (e.g., [71, 130]) and
distant (e.g., [96]) clusters. Two examples of such comparisons are shown in
Fig. 9. In the left panel, we report the comparison between X–ray and optical
dynamical masses [71]. This plot shows a reasonable agreement among the
two mass estimates, although with some scatter. The right panel reports the
comparison presented in [130]. In this plot, the triangles indicates the cluster
with clear evidences of complex dynamics. Quite interestingly, the agreement
between the two mass estimates is acceptable, with a few outliers which are
generally identified with non–relaxed clusters.
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5.3 The Self–Similar Scaling

The simplest model to explain the physics of the ICM is based on the assump-
tion that gravity only determines the thermodynamical properties of the hot
diffuse gas [90]. Since gravity does not have a preferred scale, we expect clus-
ters of different sizes to be the scaled version of each other as long as gravity
only determines the ICM evolution and there are no preferred scales in the
underlying cosmological model. This is the reason why the ICM model based
on the effect of gravity only is said to be self-similar.

If we define MΔc as the mass contained within the radius RΔc , encompass-
ing a mean density Δc times the critical density, then MΔc ∝ ρc(z)ΔcR

3
Δc

.
Here ρc(z) is the critical density of the universe which scales with redshift as
ρc(z) = ρc,0E

2(z), where E(z) is given by (12). On the other hand, the clus-
ter size R scales with z and MΔc as R ∝ M1/3E−2/3(z). Therefore, assuming
hydrostatic equilibrium, the cluster mass scales with the temperature T as

MΔc ∝ T 3/2E−1(z) . (39)

If ρgas is the gas density, the corresponding X-ray luminosity for pure thermal
bremsstrahlung emission is

LX =
∫

V

(
ρgas

μmp

)2

Λ(T ) dV , (40)

where Λ(T ) ∝ T 1/2. Further assuming that the gas distribution traces the
dark matter distribution, ρgas(r) ∝ ρDM (r), then

LX ∝ MΔcρcT
1/2 ∝ T 2E(z) . (41)
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As for the CMB intensity decrement due to the thermal SZ effect we have

ΔS ∝
∫

y(θ)dΩ ∝ d−2
A

∫
Tned3r ∝ d−2

A T 5/2E−1(z) , (42)

where y is the Comptonization parameter, dA is the angular size distance and
ne is the electron number density. We can also write ΔS in a different way to
get the explicit dependence on y0:

ΔS ∝ y0d
−2
A

∫
dΩ ∝ y0d

−2
A M2/3E−4/3(z) ∝ y0d

−2
A TE−2(z) . (43)

In this way, we obtain the following scalings for the central value of the Comp-
tonization parameter:

y0 ∝ T 3/2E(z) ∝ L
3/4
X E1/4(z) . (44)

Equations (39), (41) and (44) are unique predictions for the scaling rela-
tions among ICM physical quantities and, in principle, they provide a way
to relate the cluster masses to observables at different redshifts. As we shall
discuss in the following, deviations with respect to these relations witness the
presence of more complex physical processes, beyond gravitational dynamics
only, which affect the thermodynamical properties of the diffuse baryons and,
therefore, the relation between observables and cluster masses.

5.4 Phenomenological Scaling Relations

Using the X-ray Luminosity

The relation between X-ray luminosity and temperature of nearby clusters
is considered as one of the most robust observational facts against the self–
similar model of the ICM. A number of observational determinations now ex-
ist, pointing toward a relation LX ∝ Tα, with α � 2.5–3 (e.g., [170]), possibly
flattening towards the self–similar scaling only for the very hot systems with
T∼> 10 keV [3]. While in general the scatter around the best–fitting relation
is non negligible, it has been shown to be significantly reduced after excising
the contribution to the luminosity from the cluster cooling regions [106] or by
removing from the sample clusters with evidence of cooling flows [7]. As for
the behaviour of this relation at the scale of groups, T∼< 1 keV, the emerging
picture now is that it lies on the extension of the LX–T relation of clusters,
with no evidence for a steepening [116], although with a significant increase
of the scatter [121], possibly caused by a larger diversity of the groups popu-
lation when compared to the cluster population. This result is reported in the
left panel of Fig. 10 (from [121]), which shows the LX–T relation for a set of
clusters with measured ASCA temperatures and for a set of groups.

As for the evolution of the LX–T relation, a number of analyses have been
performed, using Chandra [57, 86, 109, 161] and XMM–Newton [95, 101] data.
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ASCA temperatures. Right panel: the evolution of the LX–T relation, normalized
to the local relation (from [109]), using Chandra temperatures of clusters at z > 0.4

Although some differences exist between the results obtained from different
authors, such differences are most likely due to the convention adopted for
the radii within which luminosity and temperature are estimated. In general,
the emerging picture is that clusters at high redshift are relatively brighter,
at fixed temperature. The resulting evolution for a cosmology with Ωm = 0.3
and ΩΛ = 0.7 is consistent with the predictions of the self–similar scaling,
although the slope of the high–z LX–T relation is steeper than predicted by
self–similar scaling, in keeping with results for nearby clusters. The left panel
of Fig. 10 shows the evolution of the LX–T relation from [109], where Chandra
and XMM–Newton observations of 11 clusters with redshift 0.6 < z < 1.0
were analyzed. The vertical axis reports the quantity LX/TB, where B is the
slope of the local relation. Quite apparently, distant clusters are systematically
brighter relatively to the local ones. However, the uncertainties are still large
enough not to allow the determination of a precise redshift dependence of the
LX–T normalization.

As for the relation between X–ray luminosity and mass, its first calibration
has been presented in [136], for a sample of bright clusters extracted from
the ROSAT All Sky Survey (RASS). In their analysis, these authors derived
masses by using temperatures derived from ASCA observations and applying
the equation of hydrostatic equilibrium, (33), for an isothermal β–model. The
resulting M–LX relation is shown in Fig. 11 (see also Fig. 8). From the one
hand, this relation demonstrates that a well defined relation between X–ray
luminosity and mass indeed exist, although with some scatter, thus confirming
that LX can indeed be used as a proxy of the cluster mass. From the other



314 S. Borgani

13.5
2

3

4

5

6

14.0 14.5 15.0

50

50

15.5
log(M200) [h–1 M  ]

lo
g(

L x
(0

.1
–2

.4
 k

eV
))

 [h
–2

 1
040

 e
rg

 s
–1

]

Fig. 11. The LX–M relation for nearby clusters (from [136]). X–ray luminosities are
from the RASS, while masses are estimated using ASCA temperatures and assuming
hydrostatic equilibrium for isothermal gas

hand, the slope of the relation is found to be steeper than the self–similar
scaling, thus consistent with the observed LX–T relation.

Using the Optical Luminosity

The classical definition of optical richness of clusters is known to be a poor
tracer of the cluster mass (e.g., [26]). However, the increasing quality of pho-
tometric data for the cluster galaxy population and the ever improving ca-
pability of removing fore/background galaxies thanks to larger spectroscopic
galaxy samples have recently allowed different authors to demonstrate the
optical/near-IR luminosities to be as reliable tracers of the cluster mass as
the X-ray luminosity.

Two examples of recent calibrations between optical/near–IR luminosity
and mass are shown in Fig. 12. In the left panel we report the result presented
in [100], based on K–band luminosites from the 2MASS and masses obtained
by applying the M–T relation by [62]. Although the data points are rather
scattered, they define a clear correlation. Quite interestingly, the best–fitting
relation has a slope shallower than unity, thus indicating the K–band mass-
to-light ratio is a (slightly) increasing function of the cluster mass. This result
is in line with previous results using optical luminosities (e.g., [72]) who found
an increasing M/L when passing from galaxy groups to clusters of increasing
richness.

Popesso et al. [130] analysed SDSS data for a set of clusters which have
been identified in the RASS. Their mass estimates come from both X–ray
temperature [136] and from the velocity dispersions as estimated from the
SDSS spectroscopic data. The results of their analysis for the i band are shown
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in the right panel of Fig. 12. Again, the optical luminosity correlates quite
tightly with the cluster mass, with an intrinsic scatter which is comparable
to, or even smaller than that of the correlation between X–ray luminosity and
mass.

These results highlight how cluster samples with precisely measured optical
luminosities can in principle be usefully employed to constrain cosmological
parameters. However, while X-ray luminosity provides at the same time a
tracer of cluster mass and a criterion to precisely determine the sample selec-
tion function, the latter quantity can be extracted from an optically selected
sample only in a rather indirect way.

6 Constraints on Cosmological Parameters

In this section we will review critically results on cosmological constraints
derived from different ways of tracing the cosmological mass function of galaxy
clusters.

6.1 The Distribution of Velocity Dispersions

A first determination of the mass function from velocity dispersions, σv, of
member galaxies has been attempted in [17]. Girardi et al. [69] used a much
larger sample of nearby clusters with measured velocity dispersions to compare
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the resulting mass function with predictions from cosmological models. The
resulting relation between σ8 and Ωm was such that σ8 � 1 for a fiducial value
of the density parameter Ωm = 0.3. More recently, data for nearby clusters,
identified in the SDSS, have been used to calibrate a relation between richness
and velocity dispersion [10]. They compared the resulting σv–distribution to
the prediction of cosmological models and found a significantly lower normal-
ization of the power spectrum, σ8 � 0.7 for Ωm = 0.3. Such differences from
different analyses highlight the presence of systematic uncertainties in the
relation between mass and observables (i.e., velocity dispersion and richness).

The application of this method to distant clusters has been applied so far
only to the CNOC sample [34], which comprises 17 clusters selected from the
EMSS out to z � 0.6. Still to date, this is the only sample of distant clusters,
with calibrated selection function, for which velocity dispersions have been
reliably measured. Bahcall et al. [11] pointed out that the resulting evolution
of the mass function is consistent with a low–density Universe. Borgani et
al. [24] reanalysed this same sample and emphasised that the uncertainties in
the local normalization of the mass function are large enough to make any
constraints on Ωm not significant.

6.2 The Temperature Function

The X-ray Temperature Function (XTF) is defined as the number density of
clusters with given temperature, n(T ). As long as a one-to-one relation exist
between temperature and mass, the XTF can be related to the mass function,
n(M), by the relation

n(T ) = n[M(T )]
dM
dT

. (45)

In this equation, the ratio dM/dT is provided by the relation between ICM
temperature and cluster mass.

Measurements of cluster temperatures for flux-limited samples of nearby
clusters were first presented in [83]. These results have been subsequently
refined and extended to larger samples with the advent of ROSAT, Beppo–
SAX and, especially, ASCA. XTFs have been computed for both nearby (e.g.,
[88, 106, 127, 128]) and distant (e.g., [50, 55, 81, 82]) clusters, and used to
constrain cosmological models. The starting point in the computation of the
XTF is inevitably a flux-limited sample for which the searching volume of
each cluster can be computed. Then the LX − TX relation and its scatter is
used to derive a temperature limit from the sample flux limit.

Once the XTF is measured from observations, (45) is used to infer the mass
function and, therefore, to constrain cosmological models. A slightly different
but conceptually identical approach, has been followed in [136], where masses
for a flux–limited sample of nearby bright RASS clusters have been computed
by applying the assumption of hydrostatic equilibrium, thereby expressing
their results directly in terms of mass function, rather than of XTF.
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Oukbir and Blanchard [122] first suggested to use the evolution of the XTF
as a way to constrain the value of Ωm. Several independent analyses converge
now towards a mild evolution of the XTF, which is interpreted as a case for
a low–density Universe, with 0.2∼< Ωm∼< 0.6. An example is reported in the
right panel of Fig. 13 (from [82]), which shows the comparison between the
XTFs of the sample of nearby clusters [83] and a sample of EMSS clusters
with ASCA temperatures (see also Fig. 14).

A limitation of the XTFs presented so far is the limited sample size (with
only a few z∼> 0.5 measurements), as well as the lack of a homogeneous sample
selection for local and distant clusters. By combining samples with different
selection criteria one runs the risk of altering the inferred evolutionary pattern
of the cluster population. This can even give results consistent with a critical–
density Universe [19, 41, 158].

Besides the determination of the matter density parameter, the obser-
vational determination of the XTF also allows one to measure the normal-
ization of the power spectrum, σ8. Assuming a fiducial value of Ωm = 0.3,
different (sometimes discrepant) determinations of σ8 have been reported by
different authors, ranging from σ8 � 0.7–0.8 (e.g., [55, 82, 136]) to σ8 � 1
(e.g., [106, 128]). Ikebe et al. [88] compared different observational determina-
tions of the XTF for nearby clusters (see left panel of Fig. 13) and established
that they all agree with each other reasonably well. Although quite comfort-
able, this result highlights that the discrepant results on the normalization
of the σ8–Ωm relation comes from the cosmological interpretation of the ob-
served XTF, and not from observational uncertainties in its calibration. While
the different model mass functions (i.e., whether Press–Schechter, Jenkins et
al. or Sheth–Tormen) can in some cases account for part of the difference,
more in general the different results are interpreted in terms of the different
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normalization of the M–T relation to be used in (45) or to the way in which
the intrinsic scatter and the statistical uncertainties in this relation are in-
cluded in the analysis. We shall critically discuss these issues in Sect. 6.5
below.

Substantially improved observational determinations of the XTF, and cor-
respondingly tighter cosmological constraints, are expected to emerge with the
accumulations of data on the ICM temperature from the Chandra and XMM–
Newton satellites. Thanks to the much improved sensitivity of these X–ray
telescopes with respect to ASCA, temperature gradients can be measured for
fairly large sets of nearby and medium–distant (z∼< 0.4) clusters, thus allow-
ing more precise determinations of cluster masses. At the same time, reliable
measurements of global temperatures are now emerging for clusters out to the
highest redshifts where they have been secured (e.g., [140]). At the time of
writing, several years after the advent of the new generation of X–ray tele-
scopes, no determinations of the XTF from Chandra and XMM–Newton data
have been presented, a situation that is expected to change quite soon.

6.3 The Luminosity Function

Another method to trace the evolution of the cluster number density is based
on the X–ray luminosity function (XLF), φ(LX), which is defined as the num-
ber density of galaxy clusters having a given X–ray luminosity. Similarly to
(45), the XLF can be related to the cosmological mass function of collapsed
halos as
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φ(LX) = n[M(LX)]
dM
dLX

, (46)

where M(LX) provides the relation between the observable LX and the cluster
mass. The above relation needs to be suitably modified in case an intrinsic
scatter exists in the relation between mass and temperature (see Sect. 6.5,
here below).

A useful observational quantity, that is related to the XLF, is given by
the flux number–counts, n(S), which is defined as the number of clusters per
steradian, having measured flux S:

n(S) =
(

c

H0

)3 ∫ ∞

0

dz
r2(z)
E(z)

n[M(S, z); z]
dM
dS

(47)

(e.g., [94]) where r(z) is the radial coordinate appearing in the Friedmann–
Robertson–Walker metric:

r(z)=
∫ z

0

dz E−1(z) ; ΩΛ = 1 − Ωm

r(z)=
2
[
Ωmz + (2 − Ωm) (1 −√

1 + Ωmz)
]

Ω2
m(1 + z)

; ΩΛ = 0 . (48)

The flux S is related to the luminosity according to

S =
LX

4πd2
L(z)

, (49)

where dL(z) = r(z)(1 + z) is the luminosity distance at redshift z.
This quantity can be measured for a flux–limited samples without having

information on cluster redshift and provides useful cosmological information in
the absence of any spectroscopic optical follow–up. A comparison between dif-
ferent observational determinations of the flux number counts for both nearby
and distant cluster samples (e.g., [138]) show indeed a quite good agreement.

Another quantity, which has been used to derive cosmological constraints
from flux–limited surveys, is the redshift distribution, n(z), which is defined
as the number of clusters found in a survey at a given redshift z:

n(z) =
(

c

H0

)3
r2(z)
E(z)

∫ ∞

Slim

dS fsky(S)n[M(S, z); z]
dM
dS

. (50)

In the above expression Slim is the limiting completeness flux of the survey,
while fsky(S) is the effective flux–dependent sky–coverage appropriate for the
considered survey. Convolving the mass function with the sky coverage inside
the integral in the above equation is essential to properly account for the dif-
ferent effective area covered at different fluxes, an aspect which is apparently
overlooked in some analyses (e.g., [157]).
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In general, the advantage of using X-ray luminosity as a tracer of the mass
is that LX is measured for a much larger number of clusters in samples with
well-defined selection properties. As discussed in Sect. 4.2, the most recent
flux–limited cluster samples contain now a fairly large (∼ 100) number of
objects, which are homogeneously identified over a broad redshift baseline,
out to z � 1.3. This allows nearby and distant clusters to be compared within
the same sample, i.e. with a single selection function. However, since the X-ray
emissivity depends on the square of the gas density, the relation between LX

and Mvir, which is based on additional physical assumptions, is more uncertain
than the Mvir–σv or the Mvir–T relations.

A useful parametrization for the relation between temperature and bolo-
metric luminosity can be casted in the form

Lbol = L6

(
TX

6keV

)α

(1 + z)A

(
dL(z)

dL,EdS(z)

)2

1044h−2 erg s−1 , (51)

with L6 defining the normalization of the relation and dL(z) the luminosity–
distance at redshift z for a given cosmology.

Analyses of the number counts from different X-ray flux–limited cluster
surveys showed that the resulting constraints on Ωm are rather sensitive to
the evolution of the mass–luminosity relation [24, 94, 107]. On the other hand,
other authors [135, 141, 157] analysed different flux–limited surveys and found
results consistent with Ωm = 1. Quite intriguingly, this conclusion is common
to analyses which combine a normalization of the local mass function, using
nearby clusters, and to the evolution of the mass function using deep surveys.
Clearly, any uncertainty in the calibration of the selection functions when
combining different surveys may induce a spurious signal of evolution of the
cluster population, possibly misinterpreted as an indication for high Ωm.

In order to overcome this potential problem, Borgani et al. [29] ana-
lyzed the RDCS sample to trace the cluster evolution over the entire redshift
range, 0.05∼< z∼< 1.3, probed by this survey, without resorting to any exter-
nal normalization from a different survey of nearby clusters [28]. They found
0.1∼< Ωm∼< 0.6 at the 3σ confidence level, by allowing the M–LX relation to
change within both the observational and the theoretical uncertainties. In
Fig. 15 we show the resulting constraints on the σ8–Ωm plane (from [138])
and how they vary by changing the parameters defining the M–LX relation:
the slope α and the evolution A of the LX–T relation (see Equation 51),
the normalization β of the M–T relation (see (36)), and the overall scatter
ΔM−LX . Flat geometry is assumed here, i.e. Ωm + ΩΛ = 1.

Similar results have been obtained by combining information on clustering
properties and the redshift distribution from the the REFLEX cluster survey
[144], thus providing σ8 � 0.7 and Ωm � 0.35. One should however notice that,
since these constraints are derived from nearby clusters, the corresponding
estimate of Ωm comes from the shape of the CDM power spectrum, rather than
from the growth rate of perturbations. It is rather reassuring that dynamical
and geometrical constraints on Ωm are in fact consistent with each other.
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Fig. 15. Probability contours in the σ8–Ωm plane from the evolution of the X-ray
luminosity distribution of RDCS clusters. The shape of the power spectrum is fixed
to Γ = 0.2 [138]. Different panels refer to different ways of changing the relation
between cluster virial mass, M , and X-ray luminosity, LX , within theoretical and
observational uncertainties (see also [29]). The upper left panel shows the analysis
corresponding to the choice of a reference parameter set. In each panel, we indi-
cate the parameters which are varied, with the dotted contours always showing the
reference analysis

Constraints on Ωm from the cluster X–ray luminosity and temperature dis-
tribution are thus in line with the completely independent constraints derived
from the baryon fraction in clusters, fb (e.g., [4, 58, 168]).

6.4 The Gas Mass Function

An alternative way of tracing the mass function of galaxy clusters is based
on using as its proxy the mass function of the cluster gas content [162]. This
method is based on the assumption that galaxy clusters are fair containers
of cosmic baryons. Similarly to the method based on the baryon fraction,
it relies on the knowledge of the cosmic baryon fraction, either provided by
data on the deuterium abundance in high–redshift absorption systems (e.g.,
[92]) combined with predictions of primordial nucleosynthesis, or from the
spectrum of CMB anisotropies (e.g., [103, 149]). This method has the potential
advantage that cluster gas mass is an easier quantity to measure than the total
collapsed mass, since it is essentially related to the total cluster emissivity.
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If we define nb(Mb) to be the baryonic mass function and n(M) the total
mass function, by definition we have nb(Mb) = n(ΩmMb/Ωb). Therefore, once
nb(Mb) and Ωb are known from observations, the total mass function can be
computed as a function of Ωm, thereby treated as a fitting parameter.

While this method has the remarkable advantage of avoiding the uncer-
tainties related to direct estimates of the total collapsed mass, it is affected
by possible violations of the assumption of universality of the baryon content
of clusters. Indeed, while this assumption should be valid for suitably relaxed
and massive clusters, it may be less so when considering all objects belong-
ing to a flux–limited sample, thus including also relatively small clusters and
structures with a complex non-relaxed dynamics.

This method was applied [163] to a set of bright clusters selected from the
RASS [136] and found σ8 = 0.72 ± 0.04 with Ωmh = 0.13 ± 0.07. Chandra
observations were included in the analysis for a set of clusters extracted from
the 160 deg2 survey [162]. They found an evolution of the gas mass function,
which is consistent with a flat cosmological model with Ωm = 0.3.

We emphasize here that the above different methods used to reconstruct
the mass function of galaxy clusters consistently prefer relatively low values
of σ8, in the range 0.7–0.8. Quite remarkably, such values have been shown
now to be required by the 3–years WMAP data release [149].

6.5 Including Uncertainties in the Analysis

As we have discussed in the previous sections, most of the analyses of the
cluster populations converge toward a low-density model, with Ωm ∼ 0.3.
However, significant differences exist between different determinations of the
normalization of the power spectrum, σ8, which amount to up to ∼ 20 per cent.
These differences are much larger that the statistical uncertainties associated
to the finite number of clusters included in the samples, thus indicating that
they arise from unaccounted sources of error, which affects the analyses.

For instance, the role of the uncertain normalization of the mass–
temperature relation in the determination of σ8 (at fixed Ωm) from the XTF
analysis has been emphasized by different authors (e.g., [88, 127, 145]). In-
creasing the normalization of the M–T relation implies that a larger mass
corresponds to a fixed temperature value. As a consequence, an observed XTF
translates into a larger mass function, therefore implying a larger σ8 (at fixed
Ωm). Since results from hydrodynamical simulations generally imply a larger
M–T normalization, a larger σ8 is expected when using in the analysis the
simulation predictions. The left panel of Fig. 16 (from [88]) shows how the best
fitting values of σ8 and Ωm from the local XTF change as one uses different
mass–temperature relations, taken from both observations and simulations.
The right panel of Fig. 16 (from [127]) show the dependence of σ8 on the
normalization of the mass–temperature relation. Note that this normalization
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Fig. 16. Left panel: the dependence of the best-fitting values of Ωm and σ8,
from the XTF of [88], upon different determinations of the mass–temperature rela-
tion, from both observational data and from hydrodynamical simulations of galaxy
clusters. Right panel: the dependence of σ8 on the normalization of the mass–
temperature relation, in the XTF analysis by [127]

is allowed here to vary over the range encompassed by observational and sim-
ulation results. The range of variation of σ8 induced by the uncertainty in the
M–T relation is at least comparable to the purely statistical uncertainty, as
indicated by the errorbars.

One may wonder why not relying only on the observational determination
of the M–T relation, instead of considering also simulation results. As we shall
discuss in Sect. 7, observational results can not necessarily provide the most
reliable determination of the M–T scaling.

The effect of changing the normalization of the M–T relation on the anal-
ysis of flux–limited samples through the XLF evolution is shown in the lower
left panel of Fig. 15. If this normalization is reduced by ∼30%, the resulting
σ8 decreases by ∼20%.

It is clear that, any uncertainty, both statistical and systematic, in the
fitting parameters describing the scaling relations between mass and observ-
able, must be included in the analysis by marginalizing over the probability
distribution function of these parameters. Let Ω be the set of cosmological
parameters that we want to constrain, and W the set of parameters which
define a scaling relation between mass M and an observable X (i.e., σv, LX

or T ). Let us also call P (W) the prior distribution for the uncertainties in the
M–X relation. If χ2(Ω,W) gives the goodness of fit provided by the choice Ω
of the cosmological parameters, for a given M–X relation, then the goodness
of fit after marginalizing over the uncertainties in M–X reads
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χ2(Ω) =
∫
χ2(Ω,W)P (W) dW∫

P (W) dW
. (52)

Of course, the marginalization generally induces an increase of the uncertain-
ties in the cosmological parameters. Furthermore, one needs to have a reliable
modeling of both size and distribution of the errors (i.e. whether they have a
uniform, a Gaussian, or a more peculiar distribution).

Besides the errors in the parameters defining the scaling relations, a dif-
ferent source of uncertainty is provided by the intrinsic scatter in these rela-
tions. Intrinsic scatter has the effect of widening the range of possible masses
which correspond to a given value of the observable quantity. This effect can
be included in the analysis by convolving the theoretical mass function with
the distribution of the scatter itself (e.g., [29, 98]). Let Ψ be an observable
quantity and φ(Ψ) its distribution (i.e., XLF or XTF), to be compared with
observations. Also, let P (MΨ|M ; z) be the probability of assigning a mass MΨ

to a cluster of true mass M , at redshift z, from the observable Ψ, for a given
M–Ψ relation. Therefore, the model prediction for the distribution φ(Ψ), to
be compared with its observational determination, is given by the convolution
of the cosmological mass function with the distribution of the intrinsic scatter:

φ(Ψ)dΨ =
∫

dMΨn(MΨ, z)P (MΨ|M ; z)
dM
dΨ

dΨ (53)

where n(M, z) is the cosmological mass function at redshift z. If one makes
the standard assumption of Gaussian scatter in the log–log plane, then

P (MΨ|M) =
(
2πσ2

ln M

)−1/2
exp
[−x2(MΨ)

]
, (54)

where x(MΨ) = (lnMΨ − lnM)/(
√

2σln M ) and σln M is the r.m.s. intrinsic
scatter. The effect of this convolution is that of increasing φ(Ψ), for a fixed
n(M), as the scatter increases. Therefore, assuming a progressively larger
scatter in the M–Ψ relation implies a progressively lower σ8 (at fixed Ωm).
An illustrative example of the effect of intrinsic scatter on the determina-
tion of σ8 is reported in Fig. 17. In the left panel we show the REFLEX
XLF [20] along with the prediction of the best fitting cosmological model
for a given choice of the M–LX relation, after assuming vanishing intrin-
sic scatter in this relation. In the left panel, we show the same compari-
son, but assuming an Gaussian-distributed intrinsic scatter of 40 per cent in
the M–LX scaling. As expected, adding the scatter has the effect of increas-
ing the predicted luminosity function, so that σ8 has to be lowered from 0.8
to 0.65 to recover the agreement with observations. This example highlights
that a good calibration of the intrinsic scatter in the scaling relations can
be as important as determining the best-fitting amplitude and slope of these
relations.
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scatter. The best fitting values of σ8 are reported in both cases

7 The Future

A new era for cosmology with galaxy clusters is now starting. High sensitivity
surveys for blind SZ identification over fairly large contiguous area, ∼ 100
deg2, have have already started or are planned in the coming years (see the
lectures by M. Birkinshaw in this volume). Also, the Planck satellite will
survey the whole sky, although at a much lower sensitivity, and provide a
large set of clusters identified through the SZ effect. These surveys promise
to identify several thousands clusters, with a fair number of objects expected
to be found at z > 1. In the optical/near-IR bands, imaging with dedicated
telescopes with large field of view will also allow to secure a large number of
distant clusters. At the same time, X–ray observations over contiguous area
(e.g., [169] and “serendipitous” searches from XMM–Newton (e.g., [118]) and
Chandra (e.g., [30]) archives will ultimately cover several hundreds deg2 down
to flux limits fainter than those reached by the deepest ROSAT pointings.
Preliminary results suggest that identification of z > 1 clusters may eventually
become routine [118]. Ultimately, they will lead to the identification of several
thousands clusters.

Optimized optics for wide-field X-ray imaging have been originally de-
scribed in a far-reaching paper by Burrows et al. [33] and proposed for the first
time to be implemented in a dedicated satellite mission in the mid 90’s. There
is no doubt that this would be the right time to plan a dedicated wide-field
X-ray telescope, which should survey the sky over an area of several thousands
deg2, with a relatively good, XMM–like or better, point spread function and
a low background. This instrument would be invaluable for studies of galaxy
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clusters, thanks to its ability of both identifying extended sources with low
surface brightness. Several missions with a similar profile have been proposed,
although none has been approved so far. Still, the community working on
galaxy clusters is regularly proposing this idea of satellite to different Space
Agencies (e.g., [79]).

The samples of galaxy clusters obtainable from large-area SZ and X-ray
surveys contain in principle so much information to allow one to constrain not
only Ωm and σ8, but also the Dark Energy (DE) content of the Universe (see,
e.g., [142, 153] for introductory reviews on Dark Energy). The equation of
state of DE is written in the form p = wρ, where p and ρ are the pressure and
density terms, respectively. The parameter w must take values in the range
−1/3 > w ≥ −1 for the DE to provide an accelerated cosmic expansion.
Constraining the value of w and its redshift evolution is currently considered
one of the most ambitious targets of modern cosmology. Ones hope is to unveil
the nature of the energy term which dominates the overall dynamics of the
Universe at the present time.

As we have mentioned, the limited statistics prevents current cluster sur-
veys to place significant constraints on ΩΛ. Although this limitation will be
overcome with future cluster surveys, the question remains as to whether the
systematic effects, discussed in Sect. 6.5, can be sufficiently understood. Dif-
ferent lines of attack have been proposed in the literature, which should not
considered as alternative to each other.

Majumdar and Mohr [105] have proposed the approach based on the so–
called self-calibration (see also [97, 98, 104]). The idea underlying this ap-
proach is that of parametrizing in a sensible way the scaling relations between
cluster observables and mass, including the corresponding intrinsic scatter and
its distribution. In this way, the parameters describing these relations can be
considered as fitting parameter to be added to the cosmological parameters.
As long as the cluster samples are large enough, one should be able to fit at the
same time both cosmological parameters and those parameters related to the
physical properties of clusters. Figure 18 (from [105]) shows the constraints
that one can place on the w–Ωm (left panel) and on the σ8–Ωm planes, after
marginalizing over the other fitting parameters, from different SZ and X–ray
surveys. In each panel different contours indicate the constraints that one can
place by progressively adding information in the analysis. The main message
here is that combining information on the evolution of the cluster population
and on its clustering can place precision constraints on cosmological parame-
ters. These constraints can be further tightened if follow up observations are
available to precisely measure masses for 100 clusters.

These forecasts nicely illustrates the potentiality of the self–calibration ap-
proach for precision cosmology with future surveys of galaxy clusters. Clearly,
the robustness of these predictions is inextricably linked to the possibility of
accurately modeling the relations between mass and observables.

A line of attack to this problem is based on using detailed hydrodynamical
simulations of galaxy clusters. The great advantages of using simulations is
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that both cluster mass and observable quantities can be exactly computed.
Furthermore, the effect of observational set–ups (e.g., response functions of
detectors, etc.) can be included in the analysis and their effect on the scaling
relations quantified. This approach has been applied by different groups in the
case of X–ray observations [64] to understand the relation between the ICM
temperature, as measured from the fitting of the observed spectrum, and
the “true” mass–weighted temperature (e.g., [108, 110, 159]). Furthermore,
simulations can also be used to verify in detail the validity of assumptions on
which the mass estimators, applied to observations, are based. The typical ex-
ample is represented by the assumption of hydrostatic equilibrium, discussed
in Sect. 5.1, for which violations in simulations at the 10–20 per cent level
have been found (e.g., [12, 27, 91, 134]).

An example of calibration of observational biases in the mass–temperature
relation, using hydrodynamical simulations, is shown in Fig. 19 (from [133]),
which provides a comparison between the observed and the simulated M–T
relation. Simulations here include radiative cooling, star formation and the
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and triangles) and for the observational data (squares with errorbars, [62]). The left
panel is for the true masses of simulated clusters; the right panel is for masses of
simulated clusters estimated by adopting the same procedure applied by Finoguenov
et al. to observational data (from [133])

effect of galactic winds powered by supernovae, and, as such, provide a real-
istic description of the relevant physical processes. The observational results,
which are taken from [62], corresponds to mass estimates based on the hy-
drostatic equilibrium for a polytropic β–model of the gas distribution [(33)].
In both panels, the temperature has been computed by using a proxy to the
actual spectroscopic temperature, the so–called spectroscopic–like tempera-
ture [110]. The left panel shows the results when exact masses of simulated
clusters are used for the comparison. Based on this result only, the conclusion
would be that simulations do indeed produce too high a M–T relation, even in
the presence of a realistic description of gas physics. In the left panel, masses
of simulated clusters are computed instead by using the same procedure as
for observed clusters, i.e. by applying (34) for the hydrostatic equilibrium of a
polytropic β–model. Quite remarkably, the effect of applying the observational
mass estimator has two effects. First, the overall normalization of the M–T
relation is decreased by the amount required to attain a reasonable agreement
with observations. Second, the scatter in the simulated M–T relation is sub-
stantially suppressed. This is the consequence of the fact that (34) provides
a one-to-one correspondence between mass and temperature, while only the
cluster-by-cluster variations of β and γ account for the intrinsic diversity of
the cluster thermal structure.

This example illustrates how simulations can be usefully employed as
guidelines to study possible biases on observational mass estimates. However,
it is worth reminding that the reliability of simulation results depends on
our capability to correctly provide a numerical description of all the relevant
physical process. In this sense, understanding in detail the (astro)physics of
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clusters is mandatory in order to calibrate them as tools in the era of precision
cosmology.

As a concluding remark, we emphasize once more that a number of inde-
pendent analyses of the cluster mass function, which have been realized so far,
favor a relatively low normalization of the power spectrum, with σ8 � 0.7–0.8
for Ωm � 0.3, thus in agreement with the most recent WMAP results [149].
This agreement must be considered as a success for cluster cosmology and
a strong encourgement for future applications to large cluster surveys of the
next generation.
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1 Outline: The Cosmic Web

The spatial cosmic matter distribution on scales from a few to more than a
hundred Megaparsecs has emerged over the past 30 years through ever more
ambitious redshift survey campaigns. From the first hints of superclustering in
the seventies to the progressively larger and more detailed three-dimensional
maps of interconnected large scale structure that emerged in the eighties,
nineties and especially post-2000, we now have a clear paradigm: galaxies
and mass exist in a wispy weblike spatial arrangement consisting of dense
compact clusters, elongated filaments, and sheetlike walls, amidst large near-
empty void regions, with similar patterns existing at higher redshift, albeit
over smaller scales. The hierarchical nature of this mass distribution, marked
by substructure over a wide range of scales and densities, has been clearly
demonstrated. The large scale structure morphology is indeed that of a Cosmic
Web Bond et al. [18].

Complex macroscopic patterns in nature arise from the action of basic,
often even simple, physical forces and processes. In many physical systems,
the spatial organization of matter is one of the most readily observable mani-
festations of the nonlinear collective actions forming and moulding them. The
richly structured morphologies are a rich source of information on the physical
forces at work and the conditions under which the systems evolved. In many
branches of science the study of geometric patterns has therefore developed
into a major industry for exploring and uncovering the underlying physics
(see e.g., Balbus & Hawley [5]).

The vast Megaparsec cosmic web is one of the most striking examples of
complex geometric patterns found in nature, and certainly the largest in terms
of sheer size. Computer simulations show the observed cellular patterns can
arise naturally through gravitational instability e.g., [62], with the emergent
structure growing from tiny density perturbations and the accompanying tiny
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velocity perturbations generated in the primordial Universe. Supported by
an impressive body of evidence, primarily those of temperature fluctuations
in the cosmic microwave background e.g., [9, 45, 78, 79], the character of
the primordial random density and velocity perturbation field is that of a
homogeneous and isotropic spatial Gaussian process. Such fields of primordial
Gaussian perturbations in the gravitational potential are a natural product
of an early inflationary phase of our Universe.

The early linear phase of pure Gaussian density and velocity perturba-
tions has been understood in great depth. This knowledge has been exploited
extensively to extract from CMB data probing the linear regime half a dozen
cosmological parameters. Notwithstanding these successes, the more advanced
phases of cosmic structure formation are still in need of substantially better
understanding. Observables of the mildly nonlinear regime also offer a wealth
of information, probing a stage when individually distinct features start to
emerge. The anisotropic filamentary and planar structures, the characteris-
tic large underdense void regions and the hierarchical clustering of matter
marking the weblike spatial geometry of the Megaparsec matter distribution
are typical manifestations of weak to moderate nonlinearity. The existence of
the intriguing foamlike network representative of this early nonlinear phase
of evolution was revealed by major campaigns to map the galaxy distribution
on Megaparsec scales while ever larger computer N-body simulations demon-
strated that such matter distributions are indeed typical manifestations of
gravitational instability.

The theoretical understanding of the nature of the emergent web is now
reasonably well developed, but the development of quantitatively accurate
analytic approximations is impeded by the lack of symmetries, strong nonlocal
influences, and the hierarchical nature of the gravitational clustering process,
with many spatial scales simultaneously relevant. Computer simulations are
relied upon to provide the quantitative basis. However, analytic descriptions
provide the physical insight into the complex interplay of emerging structures.
An area that is still developing is the morphological analysis of the observed
and simulated patterns that develop.

This first lecture notes develops the theoretical framework for our under-
standing of the Cosmic Web. We outline the various formalisms that have
been developed to describe the hierarchical nature, the anisotropic geome-
try of its elements, the intrinsic and intimate relationship with clusters of
galaxies, and the predominance of filaments consisting of galaxies, largely in
groups, connecting the clusters. Even though we concentrate on the analytical
framework, we also describe and illustrate the related generic situations on
the basis of computer simulations of cosmic structure formation.

In the accompanying second set of lecture notes (Van de Weygaert &
Bond, 2008), we give an overview of Cosmic Web observations. We focus on
the morphology of the Cosmic Web and the role of voids within establishing
this fundamental aspect of the Megaparsec Universe.
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2 Cosmic Structure Formation: From Primordial
Quantum Noise to the Cosmic Web

The weakly nonlinear Cosmic Web comprises features on scales of tens of
Megaparsecs, in which large structures have not lost memory of the nearly
homogeneous primordial state from which they formed, and provide a direct
link to early Universe physics.

In our exploration of the cosmic web and the development of appropriate
tools towards the analysis of its structure, morphology and dynamics we start
from the the assumption that the cosmic web is traced by a population of
discrete objects, either galaxies in the real observational world or particles
in that of computer simulations. Even though individual dynamically relaxed
galaxies were the most notable features historically, followed by collapsed clus-
ters, the deepest large potential wells in the universe, we will pursue the view
that filaments are basic elements of the cosmic web. Most matter assembles
along the filaments, providing channels along which mass is transported to-
wards the highest density knots within the network, the clusters of galaxies.
Likewise we will emphasize the crucial role of the voids – the large underdense
and expanding regions occupying most of space – in the spatial organization of
the various structural elements in the cosmic web. A goal is the construction
of the continuous density and velocity fields from the initial condtions, or the
reconstruction of these from data, retaining the geometry and morphology of
the weblike structures in all its detail.

2.1 Gravitational Instability

In the gravitational instability scenario, e.g., [62], cosmic structure grows from
primordial density and velocity perturbations. It has long been assumed that
the initial fluctuations were those of a homogeneous and isotropic spatial Gaus-
sian process. There is good evidence for this, most notably from the cosmic
microwave background. Zero point quantum noise is ubiquitous, and in partic-
ular will exist in any fields present in the early universe. In an early period of
cosmic acceleration, these fluctuations and the accompanying perturbations in
geometrical curvature freeze out as the universe inflates, providing the Gaus-
sian proto-web for growth after matter is created and cosmic deceleration
begins. Here we establish the nomenclature and notation for the initial grav-
itational potential and density fields. For the study of the developing cosmic
web at late times, we can ignore relativistic photons and neutrinos, and focus
on gas, dark matter and dark energy.

The formation and molding of structure is fully described by three equa-
tions, the continuity equation, expressing mass conservation, the Euler equa-
tion for accelerations driven by the gravitational force for dark matter and
gas, and pressure forces for the gas, and the Poisson–Newton equation relating
the gravitational potential to the density.
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Fig. 1. The Cosmic Web in a box: a set of each four time slices from the Millennium
simulation of the ΛCDM model. The frames show the projected (dark) matter dis-
tribution in slices of thickness 15 h−1 Mpc, extracted at z = 8.55, z = 5.72, z = 1.39
and z = 0. These redshifts correspond to cosmic times of 600 Myr, 1 Gyr, 4.7 Gyr
and 13.6 Gyr after the Big Bang. The set of four frames have a size 31.25 h−1 Mpc
zooms in on the central cluster. The evolving mass distribution reveals the major
characteristics of gravitational clustering: the formation of an intricate filamentary
web, the hierarchical buildup of ever more massive mass concentrations and the evac-
uation of large underdense voids. Image courtesy of Springel & Virgo consortium,
also see Springel et al. [80]

A general density fluctuation field for a component of the universe with
respect to its cosmic background mass density ρu is defined by

δ(r, t) =
ρ(r) − ρu

ρu
. (1)

Here r is comoving position, with the average expansion factor a(t) of the
universe taken out. Although there are fluctuations in photons, neutrinos,
dark energy, etc., we focus here on only those contributions to the mass which
can cluster once the relativistic particle contribution has become small, valid
for redshifts below 100 or so. A non-zero δ(r, t) generates a corresponding
total peculiar gravitational acceleration g(r) which at any cosmic position r
can be written as the integrated effect of the peculiar gravitational attraction
exerted by all matter fluctuations throughout the Universe,
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g(r, t) = −4πGρ̄m(t)a(t)
∫

dr′ δ(r′, t)
(r − r′)
|r − r′|3 . (2)

Here ρ̄m(t) is the mean density of the mass in the universe which can clus-
ter (dark matter and baryons). The cosmological density parameter Ωm(t) is
defined by ρu, via the relation ΩmH2 = (8πG/3)ρ̄m in terms of the Hubble
parameter H .1 The relation between the density field and gravitational po-
tential Φ is established through the Poisson–Newton equation,

∇2Φ = 4πGρ̄m(t)a(t)2 δ(r, t). (3)

The peculiar gravitational acceleration is related to Φ(r, t) through g =
−∇Φ/a.

The gravitational perturbations g induce corresponding perturbations to
the matter flows, best expressed in terms peculiar velocities v rather than
total velocities u which include the average Hubble expansion:

u(r, t) =
da(t)r

dt
= H(t) a(t)r + v(r, t) . (4)

The equation of motion for these velocity perturbations from the Hubble
expansion is a recasting of the Euler equation:

∂v
∂t

+
ȧ

a
v +

1
a

(v · ∇)v = −1
a
∇Φ . (5)

This is appropriate for a pressureless medium. For gas, an additional − 1
ρa ∇p

appears, along with possible viscosity and other gasdynamical forces. The
mass conservation is expressed by the Continuity equation:

∂δ

∂t
+

1
a
∇ · (1 + δ)v = 0 . (6)

In slightly overdense regions around density peaks, the excess gravitational
attraction slows down the expansion relative to the mean, while underdense
regions expand more rapidly. When a positive density fluctuation becomes
sufficiently overdense it can come to a halt, turn around and start to contract.
As long as pressure forces do not counteract the infall, the overdensity will
grow without bound, assembling more and more matter by accretion from
the surroundings, ultimately fully collapsing in a gravitationally bound and
1 There are other contributions to the density, such as relativistic particles and dark

energy which either have negligible energy density or do not effectively cluster
and so do not contribute to the local peculiar gravitational acceleration, but of
course do contribute to the mean acceleration value, −(4πG/3)(ρ̄ + 3p̄)ax, where
p is the total pressure. It is conventional to parameterize the mean dark energy
pressure by pde = wρde. For the cosmological constant, w = −1. Any w > −1/3
will give an accelerating term, whereas zero or positive pressure terms appropriate
for dark matter and baryons give a deceleration contribution.
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virialized object. By contrast the underdense regions around density minima
expand relative to the background, forming deep voids. Of course, negative δ’s
cannot become too negative, constrained to be δ > −1, so the void structure
is fundamentally different than the cluster structure.

In this way the primordial overdensity field evolves into the collapsed-
peak/void structure we observe, with their precise nature of the collapsed
objects, dwarf galaxies, galaxies, groups, clusters, and determined by the scale,
mass and surroundings of the initial fluctuation.

2.2 Primordial Origins: Gaussian Noise

There are both physical and statistical arguments in favour of the assumption
that the primordial density field in the Universe was a stochastic Gaussian
random field. These were applied before the observational evidence emerged
for this hypothesis.

For over 25 years, the leading paradigm for explaining the large scale
smoothness of the universe has been the inflation hypothesis, in which the
very early Universe went through an accelerated expansion driven by an ef-
fective scalar field dominating the mass-energy. During an extremely rapid
nearly exponential (nearly de Sitter) phase the Universe could have expanded
by at least ∼ e60 within a time measured in Planck time units of 10−43 s, the
details depending upon the specific particle physics realization of the inflation
phenomenon. The inflation ends when preheating occurs, namely when the
coherent inflaton field begins to decelerate and can then decay into particles.
The density and velocity perturbations that finally evolved into the macro-
scopic cosmic structures in the observable Universe were generated during
this phase as quantum zero point fluctuations in the inflaton, with associated
small-amplitude curvature fluctuations since the inflaton carries the domi-
nant source of mass-energy. Most inflation models, even radically different
ones, predict similar properties for the fluctuations: adiabatic or curvature,
Gaussian and nearly scale-invariant (see Sect. 2.2). The Gaussian nature of the
perturbations is a simple consequence of the ground state harmonic oscillator
wave function for the fluctuations (the zero point oscillations). Field inter-
actions do generate calculable small deviations from Gaussianity, but except
in quite contrived cases these are too tiny to effectively nullify the Gaussian
hypothesis. Similarly radical deviations can exist from the simple near-scale-
invariance in rather baroque models, but now these are quite constrained by
the observation of near-scale-invariance in the cosmic microwave background
data.

But even if inflation is not invoked, there was an argument from the Cen-
tral Limit Theorem that Gaussian could still arise if the density field δ(x)
is a superposition of independent stochastic processes, each with their own
(non-Gaussian) probability distribution. The Fourier components δ̂(k) are
defined by
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δ(x) =
∫

dk
(2π)3

δ̂(k) e−ik·x, (7)

where x is comoving position and k is comoving wavenumber, will be inde-
pendent, with random phases. There have been models in which Gaussianity
does not follow, in situations where the primordial structure is created in phase
transitions, e.g. associated with topological entities such as cosmic strings and
domain walls.

Gaussian Random Fields

The statistical nature of a random field f(x) is defined by its set of N -point
joint probabilities. For a Gaussian random field, this takes the simple form:

PN =
exp
[
−1

2

∑N

i=1

∑N

j=1
fi (M−1)ij fj

]

[(2π)N (detM)]1/2

N∏
i=1

dfi (8)

where PN is the probability that the field f has values in the range f(xj) to
f(xj) + df(xj) for each of the j = 1, . . . , N (with N an arbitrary integer and
x1,x2, . . . ,xN arbitrary locations in the field). (We have assumed zero mean
in this expression, as would be the case for δ,g and v.)

The matrix M−1 is the inverse of the N ×N covariance matrix M,

Mij ≡ 〈f(xi)f(xj)〉 = ξ(xi − xj) , (9)

in which the brackets 〈. . . 〉 denote an ensemble average over the probability
distribution. In effect, M is the generalization of the variance σ2 in a one-
dimensional normal distribution. The equation above shows that a Gaussian
distribution is fully specified by the matrix M, whose elements consist of spe-
cific values of the autocorrelation function ξ(r), the Fourier transform of the
power spectrum Pf (k) of the fluctuations f(r),

ξ(r) = ξ(|r|) =
∫

dk
(2π)3

Pf (k)e−ik·r . (10)

Notice that the identity of ξ(r) and ξ(|r)|) is assumed, not required. A homoge-
neous and isotropic Gaussian random field f is statistically fully characterized
by the power spectrum Pf (k).

Power Spectrum of Density Fluctuations

The main agent for formation of structure in the Universe is a gravitation-
ally dominant dark matter constituent of the Universe. Within the currently
most viable cosmology, often called Concordance Cosmology, the dark matter
is taken to be Cold Dark Matter: a species of non-baryonic, dissipationless
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and collisionless matter whose thermal properties are marked by their non-
relativistic peculiar velocity (cold) at the time of radiation-matter equality.
The popular candidate for this, for which a number of ambitious experiments
in deep mines are in place to directly detect it through its very weak non-
gravitational interactions, is the lightest supersymmetric partner of ordinary
fermions, e.g. the neutralino, a scalar field partner of the neutrino, the photino,
the fermionic partner of the photon, or some linear combination of other
partners.

The primordial spectrum Pp(k) of density perturbations in the CDM spec-
trum directly follows from the post-inflation form of the graviational potential
fluctuations through the Poisson–Newton relation, δρ(k)= −k2Φ(k)/(4πGρ̄a2).
Scale-invariant means that there is equal power per decade in the gravi-
tational potential fluctuations, 〈|Φ(k)|2〉d3k/(2π)3 ∼ kn−1d ln k is ∝ d ln k,
where n is a power law index measuring deviation from the scale-invariant
unity. The corresponding form for the initial density power spectrum is
P i

ρ(k) ≡ 〈|δ(k)|2〉 ∝ kn. Current CMB data supports an index n close to
the scale-invariant unity, but slightly deviating from it, n ≈ 0.96 ± 0.02
Kuo et al. [45] and Spergel et al. [79]. This nearly scale invariant nature
is a natural outcome of large classes of inflationary models. The expectation
is that there are at least logarithmic deviations from s constant n, and it
possible to get more radical deviations, as expressed by the running of the
index, dn/d lnk �= 0. (There are hints of running from CMB observations,
−0.06± 0.03 without gravity wave perturbations Kuo et al. [45], −0.04± 0.03
with them included Bond et al. [20].) Even before inflation theory or the data
focussed attention on n nearly one, the scale-invariance was considered a nat-
ural property to assume to avoid a power spectrum with large rises either at
large wavenumbers (n > 1) or small wavenumbers (n > 1), since δ could oth-
erwise exceed unity and nonlinear collapsed structures (e.g. primordial black
holes) could form in the ultra-early universe. Thus n = 1 was recognized as a
possibility from the early seventies, defining the Harrison–Zel’dovich–Peebles
spectrum.

During acceleration Ha increases and what has often been called the
instantaneous horizon over which signals can propagate in a Hubble time,
(Ha)−1 decreases, and wave structure with k/Ha < 1 can no longer commu-
nicate, the fluctuations freeze out at their inflationary values. Once preheat-
ing occurs and radiation and matter some to dominate the energy density,
the universe decelerates, Ha decreases and frozen-in perturbation patterns
can respond to forces associated with their gradients once k goes above Ha.
The combination of gravity and the opposing radiation pressure cause these
sub-horizon fluctuations in radiation and baryon density to respond as sound
waves. Meanwhile, positive fluctuations in the cold dark matter have no pres-
sure forces and can grow, however they must do so in an expanding environ-
ment dominated by radiation which impedes the rate of growth of δ (called
Hubble drag). It is only after the dynamics of cosmic expansion becomes dom-
inated by matter following the matter-radiation equality, at zeq ≈ 3450, when
CDM density perturbations can grow rapidly, impeded only by its own Hubble
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drag to grow at a power law rate ∝ t2/3 rather than exponentially. The evolu-
tionary history of fluctuations of a wavenumber k then depends upon whether
k exceeds Ha in the radiation or matter dominated phase. This is encapsu-
lated in the power spectrum transfer function T (k), defined by the deviation
from the primordial power spectrum shape, PCDM(k) ∝ knT 2(k). Correspond-
ing to the redshift zeq is a characteristic wavenumber scale, kHeq = Ha(zeq).
For a CDM model with vary small baryon content, the transfer function is a
unique function of k/kHeq.

From the early 1980s, much effort has gone into computing the transfer
functions in terms of the material content of the universe, varying amounts of
dark matter, massive neutrinos, baryons, relativistic matter, dark energy, etc.
An example of a much-used numerical fitting formula for the CDM class of
models which is accurate for low baryon density parameters Ωb is that given
by Bardeen et al. [6],

PCDM(k) ∝ kn

[1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4]
1/2

× [ln (1 + 2.34q)]2

(2.34q)2
,

q = k/Γ , Γ = Ωm,0h exp

{
−Ωb − Ωb

Ωm,0

}

where k = 2π/λ is the wavenumber in units of h Mpc−1 and Γ the shape
parameter. It is indeed a function of k/kHeq, with kHeq ∼ 5Γh Mpc−1 in the
Ωb → 0 limit. The Ωb dependencs approximately accounts for the effect of
baryons in the transfer function Sugiyama [81], although superposed upon
such a T is an oscillation associated with the acoustic oscillations that the
baryon-photon fluid participates in, unlike the CDM.

The corresponding effective power spectrum slope neff(k) of the Cold Dark
Matter spectrum,

neff(k) ≡ d lnP (k)
d ln k

(11)

drops from the primordial value value neff = n in the large scale limit k ↓ 0 to
neff ≈= −3+ (n− 1) modulo logarithmic corrections at high k → ∞, a direct
consequence of the large Hubble drag from radiation, hence slow growth that
the high k fluctuations experience. The density power spectrum per e-folding
in wavenumber is

Pρ(k) = dσ2
ρ/d lnk ≡ 〈|δ(k)|2〉k3/(2π2) ∝ kn+3 .

The power progressively drops from small scales to large, defining the hierar-
chical nature of the power spectrum. (The integrated rms density fluctuations
up to scale k, σρ(k), implicitly defined by (12) is by definition monotonic.)

2.3 Structure Growth

The time evolution of the density perturbation field δ(x, t) can be inferred
from the solution to the three fluid equations. Generally, |δ| grows with time.



344 R. van de Weygaert and J. R. Bond

When a cosmic structure reaches virial equilibrium, as in galaxies or clusters,
the physical density is constant, but the overdensity relative to the declining
ρ̄CDM ∝ a−3 background still rises. Once the radiation energy density falls
off after zeq, there is still a long period of growth in the linear regime, de-
fined by density perturbations with δ � 1 and velocity perturbations with
(vtexp/d)2 � 1 (with d the coherence length of the perturbation). For the
early phases of growth, it is useful to expand the perturbations in spatial
eigenmodes of our three evolution equations. These are simply plane waves,
and the Fourier-transformed equations depend only upon k for small δ (mode–
mode k−k′ couplings occur through the nonlinear δv and v ·∇v terms). The
three evolution equations reduce to a single linearized equation for the growth
of density perturbations δ(x, t) e.g.,

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
=

3
2
Ωm0H

2
0

1
a3 δ (12)

The general solution to this second order partial differential equation is the
sum of a universal growing mode solution D1(t) and a a decaying mode solu-
tion D2(t),

δ(x, t) = D1(t)Δ1(x) + D2(t)Δ2(x) (13)

Because the decaying mode is quickly rendered insignificant in comparison to
the growing mode for practical purposes it is usually sufficient to concentrate
solely on the growing mode solution.

The density growth factor D(t) is dependent upon the cosmological back-
ground: in different FRW Universes the growth of structure will proceed
differently. In a matter-dominated FRW Universe D(t) can be solved fully
analytically, for more general situations the linear growth factor needs to
be evaluated numerically. Ignoring the contribution by radiation, the linear
growth factor D(t) in a Friedmann-Robertson-Walker Universe containing only
matter and a cosmological constant Λ (or equivalent dark energy component),
with current density parameters Ωm,0 and ΩΛ,0, may be computed from the
integral (see Heath [33], Peebles [62], Hamilton [32], Lahav & Suto [49])

D(t) = D(t,Ωm,0,ΩΛ,0) =
5 Ωm,0H

2
0

2
H(a)

∫ a

0

da′

a′3H3(a′)
, (14)

where the linear density growth factor is normalized to unity at the present
epoch, D(t0) = 1. For pure matter-dominated Universes, ΩΛ = 0, one may
derive analytical expressions for D(t) (see Peebles [62]). For Ωm = 1 and no
mean curvature, D = a. For the general situation including a non-zero cosmo-
logical constant, ΩΛ �= 0, the following fitting formula provides a sufficiently
accurate approximation for most purposes [49],
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D(t) ≈ a(t)
5Ω(t)

2
1

Ω(t)4/7 − ΩΛ(t) + [1 + Ωm(t)/2][1 + ΩΛ(t)/70]
, (15)

in which Ω(t) = Ωm(t) + ΩΛ(t).
The accompanying growing mode linear velocity perturbations v(t) are

linearly proportional to the generating peculiar gravitational acceleration g(t),

v =
2 f

3HΩ
g .

The deviation from Einstein de Sitter D = a growth is described by the
dimensionless linear velocity growth factor f = f(Ωm,ΩΛ) encoding how D
runs with respect to a:

f(Ωm,ΩΛ) ≡ a

D

dD
da

(16)

= −1 − Ωm

2
+ ΩΛ +

5Ωm

2
a

D
,

with the implied growth Dv(t) of linear velocity perturbations given by

Dv(t) = aDH f(Ωm,ΩΛ) . (17)

For a matter-dominated Universe with Ωm � 1 Peebles [62] found the famous
approximation,

f(Ωm) ≈ Ω0.6
m . (18)

An extension of this approximation for a Universe with both matter and a
cosmological constant Λ was given by Lahav et al. [48],

f(Ωm,ΩΛ) ≈ Ω0.6
m +

ΩΛ

70

(
1 +

Ωm

2

)
(19)

This form clearly shows that the velocity growth being is mainly determined
by the matter density Ωm and is only (very) weakly dependent on the cos-
mological constant. The latter is to be expected since perturbations in dark
energy are expected to damp when k exceeds Ha rather than grow.

Current estimates of the material content of the Universe for tilted ΛCDM
models from CMB and large scale structure data are Ωm,0 ≈ 0.27 ± 0.03,
ΩΛ,0 ≈ 0.73 ± 0.03 and Ωb ∼ 0.045 [45]. The dark matter to baryon ratio
is ∼ 5, small enough for acoustic oscillations to be evident in the transfer
function, and this effect has now been observed in galaxy redshift surveys.
At early times any matter-dominated FRW Universe evolves as the expansion
factor a(t), D(t) = a(t) ∝ t2/3, as in an Einstein-de Sitter Universe (defined
by Ωm(a) = Ωm,0 = 1, ΩΛ = 0).
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In the Λ-dominated cosmology favored by current cosmological observa-
tions, the universe makes the transition from deceleration to acceleration at

amΛ ≈
(

Ωm,0

2ΩΛ,0

)1/3

. (20)

The vacuum energy density associated with the cosmological constant domi-
nates over the mass density of matter at 21/3amΛ, hence the Hubble parameter
is Λ-dominated and Hubble drag slows the subsequent growth of fluctuations.
With Ωm,0 ≈ 0.27 and ΩΛ,0 ≈ 0.73, this gives zmΛ ≈ 0.7. This freezing out of
growth occurs for linear structures on large scales. In nonlinear high-density
regions, the local gravity is strong enough for the evolution of structure to
continue. As a result, no larger scale weblike patterns will emerge after the
Universe gets into exponential expansion, yet within the confines of the exist-
ing Cosmic Web structures and objects will continue to evolve as clumps of
matter collapse and merge into ever more pronounced and compact halos and
features (see Sect. 2.4).

A nice illustration of the evolution is in Fig. 2, showing how the large scale
Universe changes in a ΛCDM model from z = 8 until the present-day, in a box
of size 65 h−1 Mpc. The time proceeds along the length of the two strips, the
lateral direction is taken along the length of the box. The developing structure
along the two strips shows the emergence of the Megaparsec Cosmic Web out
of the nearly uniform and early Universe. Along the lefthand frame time runs
from z ≈ 8 (bottom) until (top) and in the righthand frame from z ≈ 4 at the
bottom to the present-day at z = 0 (upper righthand frame).

The cosmic mass distribution is marked by cellular patterns whose charac-
teristic size grows is continuously growing and becomes ever more pronounced
up to z ≈ 1.5−2 (centre righthand frame). Clearly recognizable, particular in
the lefthand frame, is the hierarchical buildup of the weblike patterns. Both
filaments and voids are seen to merge with surrounding peers into ever larger
specimen of these features.

Later, as a consequence of the accelerated expansion of the Universe the
large scale structure begins to slow at z ≈ 1.5 − 2.0. As a result the overall
spatial distribution of matter remains basically unchanged. Within the ex-
isting structures the nonlinear evolution does indeed continue: filaments and
clusters remain overdense regions in which gravity continues to mould the
clustering and configuration of matter. It results in a continuing sharpening
of the weblike features in the Megaparsec universe.

2.4 Nonlinear Clustering

Once the gravitational clustering process has progressed beyond the initial
linear growth phase we see the emergence of complex patterns and structures
in the density field. Highly illustrative of the intricacies of the structure for-
mation process is that of the state-of-the-art N-body computer simulation,
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Fig. 2. The development of the large scale Universe from z = 8, after the end of
the Dark Ages, until the present-day in a timeline proceeding along two strips. The
timeline runs from lower lefthand frame (end Dark Ages, z = 8) until z ≈ 4 (top
of lefthand frame), resuming the latter at the bottom of the righthand frame and
running on to the present-day at z = 0 at the upper righthand of that frame. The
cosmic mass distribution is marked by cellular patterns whose characteristic size
grows continuously and becomes ever more pronounced up to z ≈ 1.5 − 2 (centre
righthand frame). As a consequence of the accelerated expansion of the Universe
the large scale structure freezes at that point: the overall distribution of matter
remains basically unchanged, except for the sharpening of the features as a result of
the continuing nonlinear evolution within these features. Image courtesy of Aragón-
Calvo, also see Aragón-Calvo [1]

the Millennium simulation by Springel et al. [80]. Figure 1 shows two sets of
each four time frames out of this massive 1010 particle simulation of a ΛCDM
matter distribution in a 500 h−1 Mpc box. The time frames correspond to red-
shifts z = 8.55, z = 5.72, z = 1.39 and z = 0 (i.e. at epochs 600 Myr, 1 Gyr,
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4.7 Gyr and 13.6 Gyr after the Big Bang). The earliest time frame is close to
the epoch when the first dwarf galaxies formed. Current estimates show that
the characteristic redshift for reionization of the gaseous IGM by radiation
from the first stars, when the so-called Dark Ages ended, is at zreh = 11.4±2.5
[45]. (Even with 10 billion particles, the web-like structure that actually ex-
ists at z = 8.55 is not evident since the waves that have formed it cannot
be included in such a simulation.) The first set of frames contains the Dark
Matter particle distribution in a 15 h−1 Mpc thick slice of a 125 h−1 Mpc re-
gion centered on the central massive cluster of the simulation. The second set
zooms and illuminates the details of the emergence of the central cluster in a
31.25 h−1 Mpc sized region.

The first set provides a beautiful picture of the unfolding Cosmic Web,
starting from a field of mildly undulating density fluctations towards that of
a pronounced and intricate filigree of filamentary features, dented by dense
compact clumps at the nodes of the network. The second set of frames depict
the evolution of the matter distribution surrounding the central highly dense
and compact cluster. In meticulous detail it shows the formation of the fila-
mentary network connecting into the cluster which are the transport channels
for matter to flow into the cluster. Clearly visible as well is the hierarchical na-
ture in which not only the cluster builds up but also the filamentary network.
At first consisting of a multitude of small scale edges, they quickly merge into
a few massive elongated channels. Equally interesting to see is the fact that
the dark matter distribution is far from homogeneous: a myriad of tiny dense
clumps indicate the presence of the dark halos in which galaxies – or groups
of galaxies – will or have formed.

Large N-body simulations like the Millennium simulation and the many
others currently available all reveal a few “universal” characteristics of the
(mildly) nonlinear cosmic matter distribution. Three key characteristics of
the Megaparsec universe stand out:

• Hierarchical clustering
• Anisotropic & Weblike spatial geometry
• Voids

These basic elements exist at all redshifts, but differ in scale, in fact with
a growing nonlinear wavenumber kNL(z) characterizing the onset of moder-
ate nonlinearity. The linearly-evolving integrated power spectrum defined by
(12), σ2

ρL(k, z) = D2(z)σ2
ρL(k, 0) as a function of redshift. If linear growth

were to prevail, formal nonlinearity would occur when δ(k, z) ∼ 1, namely
at k = kNL(z), where σρL(kNL(z), 0) ≡ D−1(z). Monotonicity of σρL guar-
antees kNL(z) increases with decreasing redshift. The cosmic web pattern is
developed from waves in a band of wavenumbers just below kNL(z), hence
the web-like patterns seen in simulations look somewhat similar at differing
redshifts, except the overall scale changes with increasing kNL. (The relevant
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web-band in σρL for the weak to moderate nonlinearity relevant to the web
pattern turns out to be about 0.2–0.7 [18, 19], with higher values associated
with collapsed density peaks). Because ΔσρL/σρL ∝ (neff + 3)Δ ln k in terms
of the effective index of the power spectrum neff , the wavenumber band Δ ln k
associated with σρL/σρL ≈ 1/2 is considerably wider for the flattened spectra
associated with higher redshif: that is more waves belong to the web-band
around kNL, and the filaments tend to be fatter (more ribbon-like) than at
lower redshift [19].

The challenge for any viable analysis tool is to trace, highlight and measure
each of the morphological elements of the cosmic web. Ideally it should be
able to do so without resorting to user-defined parameters or functions, and
without affecting any of the other essential characteristics.

3 Hierarchical Structure Formation

In a simple Einstein-deSitter models of spherical overdense perturbations,
when the linear δL = 1.05, the flow changes from outward, albeit increasingly
lagging the cosmic Hubble flow, to infall, toward complete collapse and virial-
ization by δL = fc ≈ 1.7. If so, a typical 2-sigma density peak associated with
a scale k will collapsed at σρL ≈ fc/2 ∼ 0.8, the (much) rarer 3-sigma density
peaks at σρL ≈ 0.6, hence the collapsed structure band is associated with
σρL ∼> 0.7 which defined the upper bound of the web pattern σρL described in
the last section. A rough relation of characteristic wave number to mass of the
collapsed object is M = (4π/3)ρ̄m(2a/k)3 ≈ 1012Ωm(2k−1/Mpc)3 M� [17].

Thus, as kNL sweeps down from high redshift, it leaves in its wake first stars
which reionize the universe formed in tiny dwarf galaxies with 2k−1 ∼ 10 kpc,
dwarf galaxies with 2k−1 ∼ 100 kpc, large Milky Way like galaxies with
2k−1 ∼ Mpc to rare large clusters with 2k−1 ∼ 10 Mpc. The web associ-
ated with sligthly lower k’s is formed from the front end of the kNL-wake.
These features of (zero-dimension) objects embedded in structures of a larger
dimension (one-dimensional filaments, two-dimensional sheets) at a lower den-
sity is clearly evident in Fig. 3, with the larger encompassing perturbations
gradually evolving through the merging and accretion of smaller scale clumps,
a process illustrated in Fig. 4.

Aptly described by the concept of merger tree (see e.g., Kauffmann &
White [42], Lacey & Cole [46]), the precise path that an encompassing pertur-
bation follows towards final collapse and virialization may be highly diverse.

3.1 Hierarchical Structures

Extended features still in the process of collapsing, or collapsed objects which
have not yet fully virialized, often contain a large amount of smaller scale
substructure at higher density which materialized at an earlier epoch. This
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Fig. 3. The hierarchical Cosmic Web: over a wide range of spatial and mass scales
structures and features are embedded within structures of a larger effective dimen-
sion and a lower density. The image shows how structures in the Millennium sim-
ulation are mutually related: at five successive zooms it focusses on a very dense
and compact massive cluster at the intersection of a high number of filamentary
extensions. Image courtesy of Springel & Virgo consortium, also see Springel et al.
[80]. Reproduced with permission of Nature

substructure is a clear manifestation of the hierarchical development of struc-
ture in the Universe. This hierarchy of embedded structures is illustrated in
Fig. 3, which shows five slices through the Millennium simulation [80], from
bottom to top representing successive zoom-ins onto a very dense and compact
massive cluster.

Observationally we can recognize traces of the hierarchical formation pro-
cess in the galaxy distribution on Megaparsec scales. The large unrelaxed
filamentary and wall-like superclusters contain various rich clusters of galax-
ies as well as a plethora of smaller galaxy groups, each of which has a higher
density than the average supercluster density. Zooming in on even smaller
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Fig. 4. Illustration of the hierarchical formation of a cluster sized halo. From: van
Haarlem & van de Weygaert [83]. Reproduced by permission of the AAS

scales, within groups large galaxies themselves are usually accompanied by a
number of smaller satellites and dwarf galaxies. The imprint of hierarchical
clustering may also be found in fully collapsed structures, such as clusters
and even the halos of galaxies. Even when studying the hot X-ray emit-
ting intracluster gas, more evenly distributed than the galaxies, the majority
of clusters appears to display some measure of substructure (e.g. Schücker
et al. [71]). Even the Coma cluster appears to be marked by a heavy infalling
group [59]. Also galaxies bear the marks of their hierarchical formation. The
most visible manifestation concerns the presence of streams in their dark ha-
los, remnants of infalling dwarf galaxies (e.g. Helmi & White [34], Freeman &
Bland-Hawthorn [29]).

3.2 Mass Scale Fluctuations

We now generalize the integrated rms power σρL(k, z) to rms fluctuations
associated with general filters W (kR) [6]:
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σ2
W (R) =

∫
d ln k |Ŵ (kR)|2 dσ2

ρL(k)/d ln k . (21)

For example, if the density field is smoothed with a tophat or Gaussian filter,
then Ŵ (x) is

Ŵ (x) →
{
ŴTH = 3

x3 (sinx− x cos x) Tophat

ŴG = exp(−x2/2) Gaussian

respectively. The Fourier transforms of the filters define smoothing functions
W in real space,

⎧⎪⎨
⎪⎩
WTH(r) = ϑ(RTH − r)/VTH , VTH = 4πR3/3

WG(r) = exp(−r2/2R2
G)/VG , VG = (2π)3/2R3

Here, ϑ(x) is the Heaviside function, unity if x ≥ 0 zero if x < 0. The smooth-
ing filter that defines σ2

ρL(kR) is called the “sharp k-space” filter, simply a
top hat in k-space, Ŵ = ϑ(1− kRk), where Rk = 1/kR. Its Fourier transform
is W (r) = ŴTH(rkR)/Vk, with Vk = (4π/3)k−3

R /(2π)3.
The nature of top hat smoothing is clear: around each point r, we volume-

average the field over a spherical region of radius R around it. There is a clear
mass assignment we can make, MTH = ρ̄ma3VTH. For the other filters, the
relation between the scale R and an appropriate mass is trickier. The obvious
values, ρ̄ma3VG and ρ̄ma3Vk turn out not to be applicable to objects.

From the discussion about the nonlinear wavenumber above, it should be
clear that σρL(k) defines a clock whose ticks march out the development of
the hierarchy. Indeed Bond et al. [16] showed that the square,

S ≡ σ2
ρL (22)

is the most appropriate. A convenient way to define a filter-independent mass
is to determine the “trajectory” RTH(S) by inverting S = σ2

TH(RTH) and us-
ing MTH for every filter. The trajectories Rk(S) and RG(S) then define func-
tional relations Rk(MTH) and RG(MTH) among filter scales. There are more
sophisticated ways of defining the mass relations among filters using profiles
around density field peaks, but this approach gives similar answers. It turns
out that the inversion for Gaussian and sharp-k space gives RTH/RG ≈ 2,
with a similar result RTH/R ≈ 2.

3.3 Collapse and Virialization: Density Barriers

The correspondence between mass and filter scale, M ∝ R3 , suggests that
if one wishes to model (proto)objects of mass M one should study the initial
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density fluctuation field when it is smoothed on (comoving) spatial scale R ∝
M1/3, with the exact coefficient depending on filter choice (22):

δ(r, t|R) =
∫

dr′ δ(r′, t)W ((r − r′)/R) . (23)

For the pure power-law spectra P (k) ∝ kneff the fluctuations S on a mass
scale M scale as

S(M) ∝ M−(neff+3)/3 . (24)

The monotonocity of S(M) with M is generally valid, even with the neff(k) we
have seen arise in ΛCDM and other theories. The Cold Dark Matter spectrum
(11) has neff(kgal) ≈ −2 on galaxy scales and neff(kcls) ≈ −1.3 on clusters
scales.

Spherical Haloes: Collapse & Virialization

We now review the extremely instructive nonlinear evolution of a spherically
symmetric density peak, which turns around and collapses, with complete
collapse to a point predicted to occur when the linearly-extrapolated (primor-
dial) density, δL(r, t|R) = D(t)/D(ti)δL(r, ti|R) (12, 13), reaches a critical
density excess fc [30]. No singularity in fact develops, rather shells of mass
pass through the origin and oscillate relative to each other finally settling
down to a virial equilibrium in which kinetic and gravitational forces are
balanced. In more realistic 3D collapses the inevitable non-spherical pertur-
bations enhance the approach to virialization. Thus we can identify smoothed
linear overdensities fta, fvir as well as fc, as well their nonlinear overdensity
counterparts, δNL,ta, δNL,vir as well as δNL,c = ∞: The collapse and subse-
quent virialization of a spherical and isolated overdensity is solely dependent
on such a critical – and universal – threshold level fc, and independent of the
mass scale M . The same holds true for its decoupling from the Hubble ex-
pansion and turnaround. The corresponding characteristic density thresholds
for turnaround fta, collapse fc and virialization fvir can be derived from the
spherical model.

The critical value for an Einstein-de Sitter Ωm = 1 Universe has the well-
known value derived by Gunn & Gott [30],

fc =
3
20

(12π)2/3 � 1.686 , (25)

while the corresponding critical nonlinear virialization value is given by

ρvir

ρu
= 18π2 � 178.0 . (26)

Similar values can be easily derived for turnaround: the linear turnaround
threshold value fta = 1.08, while the nonlinear turnaround density values is
δNL,ta = 5.55.
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For a general FRW Universe with Ωm,0 �= 1 and/or ΩΛ,0 �= 0 the values
depend upon the cosmic epoch at which turnaround, collapse or virialization
of the density perturbation takes place, i.e., it is a function of the values of
Ωm and ΩΛ at the corresponding cosmic epoch. For open cosmologies with
Λ = 0 solutions to the problem were computed by Lacey & Cole [46]. Lahave
et al. [48] adressed the issue for FRW universes with a cosmological constant
Λ �= 0, while Eke et al. [27] computed the explicit solutions for flat Ωm+ΩΛ = 1
FRW universes. The general expressions for these situations were summarized
by Kitayama & Suto [43]. The case for Dark Energy models with w �= −1
were assessed by Percival (2005). While the linear collapse threshold value
fc does depend somewhat on the cosmological background, the values for
plausible cosmologies are only marginally different from those for an Einstein-
de Sitter Universe. As may be seen in Fig. 5 the values for fc in generic-
open matter-dominated cosmologies or flat cosmologies with a cosmological
constant Λ turn out to have only a weak dependence on Ωm,0: in an open
Ωm,0 = 0.1 Universe fc,0 ≈ 1.615. We note that the nonlinear virialization
threshold δNL,vir displays a considerably stronger variation as a function of
cosmology.

Useful fitting formulae for the linear spherical model collapse value δNL,c

were obtained by Bryan & Norman [22] for ΩΛ = 0 FRW universes and for
flat Universes:{

δNL,c = 18π2 + 82(Ωm − 1) − 39(Ωm − 1)2 Ωm + ΩΛ = 1
δNL,c = 18π2 + 60(Ωm − 1) − 32(Ωm − 1)2 ΩΛ = 0

(27)

Fig. 5. Left frame: Critical threshold for collapse, fc, as a function of Ωm, in the
spherical collapse model. Results are plotted for open models with Λ = 0 (dotted line)
and flat models with Ωm + ΩΛ = 1 (dashed line). Righthand panel: the (nonlinear)
virial density of collapsed objects in units of critical density. From Eke et al. [27].
Image courtesy of Vincent Eke
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Spherical Collapse and Primordial Density Field

Given the primordial density field δL(x, t), linearly interpolated to the present
epoch, at any one cosmic epoch t (redshift z) one may identify the peaks that
have condensed into collapsed objects by tracing the regions for whom the
filtered primordial density excess

δL(x, t|R) >
fc(z)
D(z)

≡ fsc(z) , (28)

where the index sc refers to “spherical collapse”. For a Gaussian random field,
the statisistical distribution of δL(r, t|R), is

P (δL) dδL = exp[−δ2
L(r, t|R)/2S(R, t)] dδL/

√
2πS(R, t) = exp[−ν2/2] dν/

√
2π ,

ν = δL(r, t|R)/σW (R, t) , S(R, t) = σ2
W (R, t) . (29)

The number of σ is ν, which is a Gaussian random deviate (i.e., is distributed
as the unit-variance normal). The threshold on scale M is therefore achieved
when the height ν in σ units is

ν(M) =
fc

σW (M)
. (30)

High mass objects are very rare because σW (M) is at low, hence ν(M) is high.

Collapse and Halo Shape

While the above is based upon spherical collapse, in realistic circumstances
primordial density perturbations will never be spherical, nor isolated [6]. In
Bond & Myers [17], Sheth & Tormen [76], the dependence upon the shape of
the density peak as well as on the tidal influences of the surrounding mat-
ter fluctuations were worked out (see Sect. 4.5 for a detailed description of
anisotropic ellipsoidal collapse).

In a spherical collapse, the evolution of the outer radius depends only upon
the average interior properties of the perturbation, and does not depend upon
what the external matter is doing. Non-spherical perturbations such as el-
lipsoids of course collapse anisotropically. An ellipsoidal overdensity will first
collapse along its shortest axis, subsequently along its medium axis and fi-
nally along its longest axis. However, the evolution of the outer shell depends
upon the details of the interior distribution and on the exterior through the
tidal forces acting upon the shell so it is not as clean a case as spherical col-
lapse. There has been a long history of using homogeneous ellipsoids to model
anisotropic collapses. Isolated ellipsoids were considered by Icke [38], White
& Silk [88]; Peebles [62]. The extension to a cosmological setting where the
exterior tidal forces were accurately included formulating it by its relation to
the linear deformation tensor of the interior was made by Bond & Myers [17].
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This paper showed the collapse along the shortest axis will occur more rapidly
than the collapse of comparable spherical peak, that of the medium axis will
not differ too much from the spherical value while full collapse along all three
axes will be slower than that of its spherical equivalent. This was applied
to filtered density peaks by Bond & Myers [17], who determined the criti-
cal density threshold fc for complete collapse as a function of the linear tidal
field environment or deformation described below, and to random filtered-field
points by Sheth et al. [75].

Similar considerations concerning the effect of the non-spherical collapse
of density peaks on the mass function of bound objects had been followed in
a number of other studies. Monaco [56, 57, 58], Audit et al. [4] and Lee &
Shandarin [51] studied models in which the initial (Zel’dovich) deformation
tensor was used to find estimates of the collapse time. However, when following
the nonlinear evolution of the same configuration by means of a corresponding
(homogeneous) ellipsoidal collapse model Bond & Myers [17]; Eisenstein &
Loeb [26] found marked differences. Figure 13 in Sect. 4.4 shows a telling
comparison between the corresponding collapse time estimates for all three
axes of a density peak.

The collapse of a spherical peak depends only upon the density, which is
the trace of the deformation tensor, hence fc = fsc is constant. For a non-
spherical peak, the deformation tensor has an anisotopic part as well, with
two (normalized) eigenvalues, the ellipticity e and its prolateness p and the
collapse threshold depends upon these values, fec(e, p) [6, 17]. An impression
of the sensitivity to e and p of the collapse time ac(e, p) and corresponding
collapse threshold fec(e, p) may be obtained from Fig. 6, which depicts these
for an ellipsoidal perturbation in an Einstein-de Sitter Universe. For an ellip-
soidal overdensity with the same initial overdensity δi the symbols show the
expansion factor when the longest axis of the ellipsoid collapses and virializes,
as a function of e and p. The axis on the right shows the associated critical
overdensity required for collapse. At a given e, the large, medium and small
circles show the relation at p = 0, |p| ≤ e/2 and |p| ≥ e/2, respectively. The
solid curve and dashed curves depict the analytical relation specified in Sheth
et al. [75] for p = 0 and |p| = e/2. The time required to collapse increases
monotonically as p decreases. The top axis shows the related mass scale σ(m)
when identified with the value of e as the corresponding most probable value
for p=0 (see Sheth et al. [75]).

The main conclusion is that for ellipsoidal collapse the density threshold
fec becomes a “moving barrier”, dependent on the ellipticity e and/or the
mass scale σ(m). On the basis of such ellipsoidal dynamics calculations and
normalized by means of N-body simulations, Sheth & Tormen [76] found that
the density collapse barrier may be reasonably accurate approximated by the
expression
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Fig. 6. Evolution of an ellipsoidal perturbation in an Einstein-de Sitter universe.
Symbols show the expansion factor when the longest axis collapses and virializes
as a function of initial e and p with the same initial overdensity δi. The circles
correspond to different values of p (see text). The time required to collapse increases
monotonically as p decreases. Right axis: associated collapse overdensity required
for collapse. Top axis: estimate of mass resolution σ(m) based on the corresponding
most probable ellipticity e. From Sheth et al. [75]. Image courtesy of Sheth

fec(σ, z) ≈ fsc(z)

{
1 + β

[
f2

sc(z)
σ2(M)

]−α
}

(31)
= fsc(z)

{
1 + β ν(M, z)−α

}

with β ≈ 0.485 and α ≈ 0.615. Figure 7 shows a few examples of moving barri-
ers for a slightly different context. In this expression, fsc(z) is the critical over-
density required for spherical collapse at a redshift z and σ(M) the rms initial
density fluctuation smoothed on a mass scale M , both linearly extrapolated
to the present epoch. The parameters β and α are determined by ellipsoidal
collapse: strictly speaking α = 0 and β = 0 for spherical collapse, yielding
the correct asymptotic value fec = fsc. Cosmology enters via the relation fsc,
while the influence of the power spectrum enters via σ(M). The corresponding
modifications have been shown to lead to considerable improvements in the
predictive power of the excursion set formalism describing the mass spectrum
of condensed objects [76].

Equation 32 shows massive objects with low σ(M) have fec(z) ≈ fsc(z),
well described by spherical collapse, whereas less massive objects are increas-
ingly affected by external tidal forces as σ(M) rises and M decreases. Critical
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Fig. 7. Excursion Set Formalism, illustrated for the formation of a halo. Random
walk exhibited by the average overdensity δ centred on a randomly chosen position
in a Gaussian random field, as a function of smoothing scale, parametrized by SM

(large volumes are on the left, small volumes on the right). Dashed horizontal line
indicates the collapse barrier fc. The largest scale (smallest value of S) on which
δ(S) exceeds fc is an estimate of the mass of the halo which will form around that
region. From Sheth & van de Weygaert [77]

thresholds can also be determined for other structural features, such as voids,
using 2 thesholds [77] and walls and filaments (Sect. 3.3).

3.4 Halo Excursions

The excursion set formalism, also known as extended Press–Schechter for-
malism Press & Schechter [67], Peacock & Heavens [61], Bond et al. [16],
Sheth [74], evaluates the effects substructure over a range of scales has on
the emergence of objects in a cosmic density field. For an early paper on see
Epstein [28] and for a recent review see [91].

It elucidates the hierarchical development of structure using just the lin-
ear density and tidal fluctuations in combination with the knowledge of their
fate once the linear smoothed density exceeds the threshold values fc we
have discussed. The idea is that around a point r, δLr, t|R) defines a tra-
jectory, starting from zero at very large R to larger values at small R. We
have seen that S(M) is a convenient clock increasing from high mass to low,
hence we can also consider the smoothed field as a function of S = σ2

W (R):
δL(r, t|S). Further, since S(R, t) = D2(t)S(R, t0), where t0 is the current time,
δL(r, t|S(t))/sqrtS(t) is independent of t, a function only of S(t0) which acts
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like a pseudo-time. For each r, we have a trajectory in resolution S, δL(S).
When δL reaches the fc barrier, we identify the scale R with the mass of a
collapsed object of mass M(S) at that position. The reader will realize that
this prescription is unrealistic in that points very near to each other may have
their density fields piercing the barrier at different S, hence be indentified
with objects of different mass even though they collapse together. At best the
prescription can be statistically valid but not a true real space description.
That requires a non-local treatment. Further, since small-scale density peaks
are embedded within larger regions which may or may not have pierced the
critical collapse threshold. If the larger region has collapsed this will have in-
volved the merging of the small scale peak with its neighbouring halos and
surrounding matter while it got absorbed into the more massive entity. Con-
sider the sharp-k filter with its SM = S(Rk) integrated power. If the linear
primordial density field is a homogeneous random Gaussian field, the N-point
correlation functions are translation invariant and the Fourier components
δ̂(k) are independent, that is uncorrelated in k. Sliding from a resolution SM

to a higher resolution SM +ΔSM , the filtering process in essence involves the
increment by a random Gaussian variate δ̂(k).

Figure 7 shows an example of a typical result: a jagged line represent-
ing the linear overdensity centered on a randomly chosen position r in the
initial Gaussian random field as a function of the scale SM . Because of the
independence of each of the Gaussian distributed Fourier components, the
process turns into that of a Brownian random walk. The density threshold fc

for forming bound virialized objects is given by the dashed line, assumed mass
independent here hence the line is horizontal. The largest scales, SM = 0, are
those of the homogeneous global FRW Universe so that the random walk will
start of at δ(S = 0) = 0. In hierarchical models SM will increase as we zoom
in on to an increasingly resolved mass distribution around the chosen position
x. As we move to a higher SM and smaller R fluctuations of an increasing
amplitude will get involved.

The distribution of masses of collapsed and/or virialized objects is equated
to the distribution of distances SM which one-dimensional Brownian motion
random walks travel before they first cross a barrier of constant height fc.
In other words, one should find the distribution of the first upcrossing of the
random trajectory, the lowest value of S for which δ(r|S) = fc. The rate
of first upcrossings at a threshold was calculated by Chandrasekhar (1943).
When the random walk is absorbed by the barrier at the first upcrossing at
S, the point r is identified with a collapsed object of mass M(S). Here rate is
per unit psuedo-time, or per unit resolution, dS. In the absence of a barrier,
the distribution of trajectories with a density value δL(S) at S is the usual
Gaussian distribution:

Π(δL, S) =
1√
2π S

exp
{
− δ2

L

2S

}
(32)
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In the presence of a barrier fc, the probability distribution Π(δL, S|fc) of
trajectories which have a density δL at resolution SM but did not cross the
boundary at smaller S < SM ) follows from solving the Fokker-Planck equation
(see Bond et al. [16], Zentner [91]),

∂Π
∂S

= lim
ΔS→0

{ 〈(Δδ)2〉
2ΔS

∂2Π
∂δ2

− 〈δΔδ〉
ΔS

∂Π
∂δ

}
, (33)

where the next step in the trajectory, ΔδL(S) = δL(S + ΔS) − δL(S) as we
increment the resolution by ΔS. The critical feature of sharp k-filter is that
this step is uncorrelated with the prior value, 〈δL(S)ΔδL(S)〉 = 0, in which
case the drift term vanishes and simple diffusion remains,

∂Π
∂S

=
1
2
∂2Π
∂δ2

. (34)

There is a simple graphical way of determining Π. Consider a trajectory
which has reached the threshold for some scale S < SM . Its subsequent path is
entirely symmetric and at SM it is equally likely to be found above as well as
below the threshold (see Fig. 7). In other words, for each of these trajectories
there is an equally likely trajectory that pierced the barrier at the same scale
R but whose subsequent path is a reflection in the barrier, ending up below
the threshold. The probability Π that the threshold has never been crossed
may be obtained by subtracting the reflected distribution from the overall
Gaussian distribution (32),

Π(δL, SM |fc) =
1√

2π SM

{
exp
(
− δ2

L

2Sm

)
− exp

(
− (δL − 2fc)2

2Sm

)}
. (35)

Integrating this distribution over all values δL yields the probability that the
threshold has been crossed at least once, and the corresponding probability
that the location is enclosed in an object of mass ≤ M ,

Ps(SM |fc) = 1 −
∫

dδL Π(M |fc) = 1 − erf
{

fc√
2σ(M, t)

}
(36)

in which erf(x) is the conventional error function. In an entirely natural
fashion this probability takes care of the so-called fudge factor 1/2 which
had been missed in the original Press–Schechter result Press & Schechter [67].
They assumed that the fraction of mass in objects of mass ≥ M is given by the
fraction of mass above the threshold fc at resolution SM . This fails to take into
account that there are mass fluctuations which did not reach the threshold
at mass scale M , yet are part of a collapsed structure on larger mass scale.
Indeed, we will see that this is also an essential issue in understanding the
development of a void hierarchy (see accompanying notes, van de Weygaert &
Bond (2005)).
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3.5 Halo Mass Distribution

Given the identification of mass, M(S), we may readily infer the number
density n(M) of objects of mass M from the mass excursion probability Π(M)
(35):

n(M) d lnM =
ρ̄m

M

∣∣∣∣dPs

dS

∣∣∣∣ dS
d lnM

d lnM (37)

which translates into

n(M) dM =

√
2
π

ρu

M2
ν(M) exp

{
−ν(M)2

2

} ∣∣∣∣d lnσ(M)
d lnM

∣∣∣∣ (38)

For a pure power-law power spectrum, P (k) ∝ kn, one may readily observe
that the mass spectrum of virialized and bound objects in the Universe is a
self-similar evolving function

n(M) dM =

√
1
2π

(
1 +

n

3

) ρu

M2

(
M

M∗

)(3+n)/6

exp

{
−
(

M

M∗

)(3+n)/3
}

.

(39)
The self-similar evolution of the mass distribution is specified via the time
development of the characteristic mass M∗(t),

M∗(t) = D(t)6/(3+n) M∗,o . (40)

whose present-day value is inversely proportional to fc,

M∗,0 =
(

2A
f2

c

)3/(3+n)

. (41)

For a ΛCDM Universe, with Ωm = 0.3, Fig. 8 depicts the predicted Press–
Schechter halo mass functions at several different redshifts [7]: z = 0 (solid
curve), z = 5 (dotted curve), z = 10 (short-dashed curve) and z = 20 (long-
dashed curve).

3.6 Hierarchical Evolution

Smaller mass condensations may have corresponded with genuine physical
objects at an earlier phase, while later they may have been absorbed into
a larger mass concentration. It is straightforward and insightful to work
out the evolving object distribution within the context of the excursion set
formalism.

Returning to the graphical representation in Fig. 7 we may easily appre-
ciate what happens as the mass distribution evolves. The linear growth of
fluctuations implies a gradual uniform rise of the whole random walk curve as
each mass fluctuations increase by the linear growth factor D(z). Going back in
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Fig. 8. Press–Schechter halo mass function at several different redshifts: z = 0 (solid
curve), z = 5 (dotted curve), z = 10 (short-dashed curve) and z = 20 (long-dashed
curve). From Barkana & Loeb [7]. Reproduced with permission of Elsevier

time the random walk curve would therefore have had a proportionally smaller
amplitude. Linearly translated to the present epoch the density threshold bar-
rier would gradually decrease in amplitude, proportional to 1/D(z). Earlier
barrier crossings would therefore have occurred at a higher values of S(R), a
smaller scale R and a smaller mass M : Location x would have been incorpo-
rated within an object of a correspondingly smaller mass.

As we proceed in time the barrier fc(z) would descend further. Gradually
the random walk path will start to pierce through the barrier at lower S
and correspondingly larger values of the mass scale M . The halo into which
the point may be embedded will first accrete surrounding matter, thereby
gradually growing in mass. Even later the halo may merge with surrounding
clumps into a much more massive halo. The corresponding mass scale would
reveal itself as the next peak in the random walk. Figure 7 does reveal such
behaviour through the presence of three peaks, H1, H2 and H3: H3 corresponds
to an early small object that merged with surrounding mass into the more
massive peak H2. The latter would merge again with neighbouring peers into
the largest clump, object H1.

While the excursion set formalism manages to describe quantitatively the
merging and accretion history of halos in a density field, it has opened up the
analysis of merging histories of objects in hierarchical scenarios of structure
formation [21, 46, 47] and the related construction of the merger tree of the
population of dark halos [42, 46].
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3.7 Extension to the Four Mode Two-Barrier Excursion
Set Formalism

We have seen that the hierarchical nature of the cosmic structure forma-
tion process plays a prominent role in the nonlinear evolution of and graudal
buildup of galaxies, galaxy halos and clusters. In the following sections we will
see that it affects all aspects of the nonlinear evolution of large scale struc-
ture, including the morphology of filaments and the properties of the void
population.

With respect to the void population, we will find that there is a distinct
asymmetry between the nonlinear hierarchical evolution of voids and that of
haloes (see accompanying review on morphology of the cosmic web). For the
evaluation of the hierarchical evolution of voids two processes need to be taken
into account: the void-in-void process avoids double counting of voids while the
void-in-cloud process removes voids within encompassing overdensities. What
distinguishes voids from their collapsing peers is that clusters will always
survive when located within a void, while the reverse is not true: voids within
overdense clusters will be rapidly squeezed out of existence.

Sheth & van de Weygaert [77] have shown that the excursion set formalism
provides a mathematically properly defined context for describing the asym-
metry between void and haloes. The related extension of the formalism to a
two-barrier formalism culminates in a four mode formalism. In this section we
summarize these findings, while we refer to [85] for a more proper treatment
of the evolution of voids. Figure 9 illustrates the argument. There are four
sets of panels. The left-most of each set shows the random walk associated
with the initial particle distribution. The two other panels show how the same
particles are distributed at two later times.

Cloud-in-Cloud

The first set illustrates the cloud-in-cloud process. The mass which makes up
the final object (far right) is given by finding that scale within which the linear
theory variance has value S = 0.55. This mass came from the mergers of the
smaller clumps, which themselves had formed at earlier times (centre panel).
If we were to center the random walk path on one of these small clumps, it
would cross the higher barrier fc/D(t) > fc at S > 0.55, the value of D(t)
representing the linear theory growth factor at the earlier time t.

Cloud-in-Void

The second series of panels shows the cloud-in-void process. Here, a low mass
clump (S > 0.85) virializes at some early time. This clump is embedded in a
region which is destined to become a void. The larger void region around it
actually becomes a bona-fide void only at the present time, at which time it
contains significantly more mass (S = 0.4) than is contained in the low mass
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Fig. 9. Four mode two-barrier excursion set formalism. Each row illustrates one of
the four basic modes of hierarchical clustering: the cloud-in-cloud process, cloud-in-
void process, void-in-void process and void-in-cloud process (from top to bottom).
Each mode is illustrated using three frames. Leftmost panels show ‘random walks’:
the local density perturbation δ0(x) as a function of (mass) resolution scale SM (cf.
Fig. 7) at an early time in an N-body simulation of cosmic structure formation.
In each graph, the dashed horizontal lines indicate the collapse barrier fc and the
shell-crossing void barrier fv. The two frames on the right show how the associated
particle distribution evolves. Whereas halos within voids may be observable (second
row depicts a halo within a larger void), voids within collapsed halos are not (last
row depicts a small void which will be squeezed to small size as the surrounding
halo collapses). It is this fact which makes the calculation of void sizes qualitatively
different from that usually used to estimate the mass function of collapsed halos.
From Sheth & van de Weygaert [77]
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clump at its centre. Notice that the cloud within the void was not destroyed
by the formation of the void; indeed, its mass increased slightly from S >
0.85 to S ∼ 0.85. Such a random walk is a bona-fide representative of S ∼
0.85 halos; for estimating halo abundances, the presence of a barrier at fv

is irrelevant. On the other hand, walks such as this one allow us to make
some important inferences about the properties of void-galaxies, which we
will discussess shortly.

Void-in-Void

The third series of panels shows the formation of a large void by the mergers
of smaller voids: the void-in-void process. The associated random walk looks
very much the inverse of that for the cloud-in-cloud process associated with
halo mergers. The associated random walk shows that the void contains more
mass at the present time (S ∼ 0.4) than it did in the past (S > 0.4); it is
a bona-fide representative of voids of mass S ∼ 0.4. A random walk path
centered on one of these mass elements which make up the filaments within
the large void would resemble the cloud-in-void walk shown in the second
series of panels. [Note that the height of the barrier associated with voids
which are identified at cosmic epoch t scales similarly to the barrier height
associated with halo formation: fv(t) ≡ fv/D(t).]

Void-in-Cloud

Finally, the fourth series of panels illustrates the void-in-cloud process. The
particle distribution shows a relatively large void at the early time being
squeezed to a much smaller size as the ring of objects around it collapses.
A simple inversion of the cloud-in-void argument would have tempted one to
count the void as a relatively large object containing mass S ∼ 1. That this is
incorrect can be seen from the fact that, if we were counting halos, we would
have counted this as a cloud containing significantly more mass (S ∼ 0.3),
and it does not make sense for a massive virialized halo to host a large void
inside.

3.8 Peak Structure

While the extended Press–Schechter excursion set formalism does provide a
good description of the mass functions of cosmological objects, it basically in-
volves an intrinsically local description and does not deal with the real internal
structure of a genuine collapsed and virialized peak in the mass distribution.
Points which would collapse together to form a virialized object of a given mass
may be counted as belonging to objects of different mass [16]. Another unap-
pealing aspect is that the derivation of the Press–Schechter formula requires
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the unphysical sharp k-filter, a rather unphysical form of density smoothing,
and a rather arbitrary mass assignment scheme.

It is the nonlocal peak-patch description of Bond & Myers [17] that is able
to incorporate a more global description of evolving volume elements.

4 Anisotropic and Weblike Patterns

The second key characteristic of the cosmic matter distribution is that of a
weblike geometry marked by highly elongated filamentary, flattened planar
structures and dense compact clusters surrounding large near-empty void re-
gions (see Fig. 1). In this section we focus on the backbone – or skeleton –
of the Cosmic Web defined by these anisotropic filamentary and sheetlike
patterns.

The recognition of the Cosmic Web as a key aspect in the emergence
of structure in the Universe came with early analytical studies and approx-
imations concerning the emergence of structure out of a nearly featureless
primordial Universe. In this respect the Zel’dovich formalism [90] played a
seminal role. It led to view of structure formation in which planar pancakes
form first, draining into filaments which in turn drain into clusters, with the
entirety forming a cellular network of sheets. As borne out by a large sequence
of N-body computer experiments of cosmic structure formation, weblike pat-
terns in the overall cosmic matter distribution do represent a universal but
possibly transient phase in the gravitationally driven emergence and evolution
of cosmic structure. The N-body calculations have shown that weblike pat-
terns defined by prominent anisotropic filamentary and planar features – and
with characteristic large underdense void regions – are a natural manifestation
of the gravitational cosmic structure formation process.

Interestingly, for a considerable amount of time the emphasis on anisotropic
collapse as agent for forming and shaping structure was mainly confined the
Soviet view of structure formation, Zel’dovich’s pancake picture, and was seen
as the rival view to the hierarchical clustering picture which dominated the
western view. Here we intend to emphasize the succesfull synthesis of both
elements on the basis of the peak patch description of Bond & Myers [17].
It forms the most elaborate and sophisticated analytical description for the
emergence of walls, filaments and fully collapsed triaxial halos in the cosmic
matter distribution. Culminating in the Cosmic Web theory [18] it stresses
the dominance of filamentary shaped features instead of the dominance of
planar pancakes in the pure Zel’dovich theory. Perhaps even more important
is its identification of the intimate dynamical relationship between the fila-
mentary patterns and the compact dense clusters that stand out as the nodes
within the cosmic matter distribution: filaments as cluster–cluster bridges. To
appreciate the intricacies of the Cosmic Web theory we need to understand
the relation between gravitational tidal forces and the resulting deformation
of the matter distribution.
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4.1 Anisotropic Collapse

The existence of the Cosmic Web is a result of this tendency of matter
concentrations to contract and evolve into anisotropic, elongated or flattened,
structures. It is a manifestation of the generic anisotropic nature of gravi-
tational collapse, a reflection of the intrinsic anisotropy of the gravitational
force in a random density field.

Anisotropic gravitational collapse is the combined effect of internal and
external tidal forces. The internal force field of the structure hangs together
with the flattening of the feature itself. It induces an anisotropic collapse along
the main axes of the structure. The resulting evolution can be most clearly
understood in and around a density maximum (or minimum) δ, to first order
corresponding to the collapse of a homogeneous ellipsoid [17, 24, 26, 38, 88].
The external ‘background’ force field is the integrated gravitational influence
of all external density features in the Universe, as such a manifestation of
the inhomogeneous cosmic matter distribution. For most situations the role
of the large scale tidal forces in the early phases of the collapse of a feature
– the evolutionary phase in which most elements of the cosmic web reside –
may be succesfully described by the Lagrangian Zel’dovich formalism [90].

The peakpatch formalism embeds the anisotropic tendency of gravitational
collapse within the context of a hierarchical mass distribution. It achieves this
by combining the nonlinear internal evolution of a particular region in the
cosmic mass distribution, and modelling this by means of the homogeneous
ellipsoid model, with a reasonably accurate description of the large-scale ex-
ternal tidal influence in terms of the Zel’dovich approximation [17, 75].

4.2 Force Field and Displacement

For the description of the dynamical evolution of a region in the density field –
a patch- it is beneficial to make a distinction between large scale “background”
fluctuations δb and small-scale fluctuations δf ,

δ(x) = δb(x) + δf(x) , (42)

in which

δf(x) =
∫

dk
(2π)3

δ̂(k) Ŵ ∗
f (k;Rb)

δb(x) =
∫

dk
(2π)3

δ̂(k) Ŵ ∗
b (k;Rb) (43)

Ŵ ∗
f (k;Rb) is a high-pass filter which filters out spatial wavenumber compo-

nents lower than k < 1/Rb. Ŵ ∗
b (k;Rb) is the compensating low-pass filter. The

small-scale fluctuating density field δf exclusively contributes to the internal
evolution of the patch. Predominantly made up of spatial wavenumber com-
ponents higher than 1/Rb, it determines the substructure within the patch,
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sets the corresponding merging times while influencing the overall collapse
time of the mass element (see Fig. 22). For our picture to remain valid the
scale Rb of the smooth large-scale field should be chosen such that it remains
(largely) linear, i.e. the r.m.s. density fluctuation amplitude σρ(Rb, t) � 1.
Note that the smooth large-scale field δb also contributes to the total mass
content within the patch.

The small-scale local inhomogeneities induce small-scale fluctuations in
the gravitational force field, gf(x). To a good approximation the smoother
background gravitational force gb(x) (see (2) in and around the mass ele-
ment includes three components (excluding rotational aspects). The bulk force
gb(xpk) is responsible for the acceleration of the mass element as a whole. The
divergence (∇·gb) encapsulates the collapse of the overdensity while the tidal
tensor quantifies its deformation,

gb,i(x) = gb,i(xpk) + a

3∑
j=1

{
1
3a

(∇ · gb)(xpk) δij − Tb,ij

}
(xj − xpk,j) . (44)

The tidal shear force acting over the mass element is represented by the tidal
tensor Tij ,

Tb,ij ≡ − 1
2a

{
∂gb,i

∂xi
+

∂gb,j

∂xj

}
+

1
3a

(∇ · gb) δij

(45)

=
1
a2

∂2Φb

∂xi ∂xj
− 3

2
ΩH2 δb(x) δij , (46)

in which the trace of the collapsing mass element, proportional to its overden-
sity δb, dictates its contraction (or expansion).

The force field induces displacements of matter in and around the mass
element. The resulting displacement s(q, t) consists of a superposition of the
small-scale and smooth large-scale contributions, sf and sb: matter initially
at a (Lagrangian) position q moves to a location x(q, t),

x(q, t) = q + s(q, t) = q + sb(q, t) + sf(q, t) . (47)

The smooth large-scale displacement field sb in and around the patch includes
a bulk displacement spk and a deforming strain Epk,ij,

sb,i(q, t) ≈ spk,i +
3∑

j=1

Epk,ij (qj − qpk,j) , i = 1, . . . , 3 . (48)

The bulk displacement of the (mass) center of the peak

spk ≡ sb(qpk) , (49)



Clusters and the Theory of the Cosmic Web 369

specifies the movement of the mass element as a whole. The large-scale strain
field Eb,ij at the location of the patch, Epk,ij ≡ Eb,ij(qpk),

Eb,ij(q) ≡ 1
2

{
∂sb,i

∂qj
+

∂sb,j

∂qi

}
(q) . (50)

embodies the (gravitationally induced) deformation, in volume and shape, of
the mass element,

Epk,ij ≡ E ′
pk,ij +

1
3a

(∇ · sb)(qpk) δij . (51)

The peak strain’s trace (∇ · sb)(qpk) quantifies the shrinking volume of the
mass element while the tensor E ′

pk,ij embodies the - mostly externally induced
- anisotropic deformation of the region.

The source for the external deformation E ′
st,ij is the external tidal field

Tb,ij. In the early phases of gravitational collapse the role of the large scale
tidal forces is succesfully framed in terms of the by Zel’dovich formalism [90].
The internally induced deformation, a reaction to the nonspherical shape of
the mass element, will rapidly enhance along with the nonlinear collapse of
the peak.

4.3 Zel’dovich Approximation

In a seminal contribution Zel’dovich [90] found by means of a Lagrangian per-
turbation analysis that to first order – typifying early evolutionary phases –
the reaction of cosmic patches of matter to the corresponding peculiar grav-
ity field would be surprisingly simple. The Zel’dovich approximation is based
upon the first-order truncation of the Lagrangian perturbation series of the
trajectories of mass elements,

x(q, t) = q + x(1)(q, t) + x(2)(q, t) + . . . , (52)

in which the successive terms xm correspond to successive terms of the relative
displacement |∂(x − q)/∂q|,

1 �
∣∣∣∣∣
∂x(1)

∂q

∣∣∣∣∣ �
∣∣∣∣∣
∂x(2)

∂q

∣∣∣∣∣ �
∣∣∣∣∣
∂x(3)

∂q

∣∣∣∣∣ � . . . , (53)

and embodies the solution of the Lagrangian equations for small density per-
turbations (δ2 � 1). Assuming irrotational motion, in accordance with linear
gravitational instability, and restricting the solution to the growing mode leads
to the plain ballistic linear displacement of the Zel’dovich approximation,

x = q − D(t) ∇Ψ(q) = q − D(t) ψ(q) . (54)

dictated by the Lagrangian displacement potential Ψ(q) and its gradient, the
Zel’dovich deformation tensor ψmn. The path’s time evolution is specified by
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the linear density growth factor D(a) [62] (14). An essential aspect of the
Zel’dovich approximation is the 1 − 1 relation between the displacement po-
tential Ψ(q) and the (primordial, linearly extrapolated) gravitational potential
Φ̃(q, t)

Ψ(q) =
2

3Da2H2 Ω
Φ̃(q, t) =

2
3H2

0 Ω0

Φ̃0(q) , (55)

where Φ̃0 is the linearly extrapolated gravitational potential at the current
epoch (a= 1). The tensor ψmn, directly related to the strain tensor Emn =
D(t)ψmn, describes the deformation of the mass element,

ψmn =
2

3a3ΩH2

∂2Φ̃
∂qm ∂qn

=
2

3ΩH2a

(
T̃mn +

1
2
ΩH2 δ̃ δmn

)

(56)

=
2

3Ω0H
2
0

T̃mn,0 +
1
3
δ̃0 δmn

The relation establishes the intimate connection between the deformation of
an object and the tidal shear field Tmn, expressed in terms of the linearly
extrapolated primordial values of these quantities, T̃mn and δ̃. These evolve
according to δ̃(t) ∝ D(t) and T̃mn ∝ D/a3. On the basis of this relation
we immediately see that the (linearly extrapolated) tidal shear field T̃mn is
directly related to the traceless strain tensor E ′

mn,

T̃mn(t) = 4πGρu(t)
{
Emn − 1

3
δ̃ δmn

}
= 4πGρu(t) E ′

mn . (57)

Anisotropic Zel’dovich Collapse

The resulting (mildly nonlinear) local density evolution is entirely determined
by the eigenvalues λ1, λ2 and λ3 of the deformation tensor ψmn, ordered by
λ3 ≥ λ2 ≥ λ1),

ρ(x, t)
ρu

=

∥∥∥∥∥
∂x
∂q

∥∥∥∥∥
−1

=

∥∥∥∥∥δmn −D(t)ψmn

∥∥∥∥∥
−1

=
1

[1 −D(t)λ1][1 −D(t)λ2][1 −D(t)λ3]
, (58)

where ρ(x, t) is the local density at time t and ρu(t) the global (FRW) cosmic
density. Dependent on whether one or more of the eigenvalues λi > 0, the
feature will collapse along one or more directions. The collapse will proceed
along a sequence of three stages. First, collapse along the direction of the
strongest deformation λ3. If also the second eigenvalue is positive, the ob-
ject will contract along the second direction. Total collapse will occur only if
λ1 > 0.
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The time sequence of four frames in Fig. 10 portraits the success, and
shortcomings, of the Zel’dovich scheme. The four frames reveals the gradual
morphological procession along pancake and filamentary stages. A comparison
with the results of full-scale N-body simulations shows that in particular at
early structure formation epochs the predicted Zel’dovich configurations are
accurately rendering the nonlinear matter configurations. The spatial configu-
rations predicted by the Zel’dovich approximation form a reasonably accurate
approximation to the linear and mildly nonlinear phases of structure forma-
tion. The approximation breaks down when the orbits of migrating matter
elements start to cross. Towards this phase the linearly extrapolated gravita-
tional field configuration no longer forms a reasonable reflection of the gen-
uine nonlinear gravitational field. The self-gravity of the emerging structures
becomes so strong that the initial “ballistic” motion of the mass elements will
get seriously altered, redirected and slowed down.

Fig. 10. Zel’dovich displaced particle distributions inferred from a unconstrained
random realization of a primordial matter distribution for a SCDM cosmological
scenario in a 50 h−1 Mpc. Time sequence from top left to bottom right, frames
corresponding to cosmic epochs a = 0.10, 0.15, 0.20 and 0.25
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4.4 Ellipsoidal Collapse

Full-scale gravitational N-body simulations, and/or more sophisticated
approximations, are necessary to deal self-consistently with more advanced
nonlinear stages. While the Zel’dovich approximation is relatively accurate
in describing the large-scale “background” induced deformation of mass ele-
ments, the internal evolution of a mass element quickly assumes a highly non-
linear character and will strongly amplify the externally induced anisotropic
shape. Aspects of the subsequent evolution and anisotropic collapse can be
reasonably approximated by the homogeneous ellipsoid model.

Quintessential is the observation that gravitational instability not only
involves the runaway gravitational collapse of any cosmic overdensity, but
that it has the additional basic attribute of inevitably amplifying any slight
initial asphericity during the collapse.

The Ellipsoidal Approximation

The Homogeneous Ellipsoidal Model assumes a mass element to be a region
with a triaxially symmetric ellipsoidal geometry and a homogeneous interior
density, embedded within a uniform background density ρu.

The early work by Icke [37, 38] elucidated the key aspects of the evolu-
tion and morphology of homogeneous ellipsoids within an expanding FRW
background Universe, in particular the self-amplifying effect of a collapsing
and progressively flattening isolated ellipsoidal overdensity. Translating the
formalism of Lynden-Bell [54] and Lin et al. [53] to a cosmological context
he came to the conclusion that flattened and elongated geometries of large
scale features in the Universe should be the norm. White & Silk [88] managed
to provide an elegant analytic approximation for the evolution of the ellip-
soid that is remarkably accurate. However, these early studies did not reduce,
as they should, to the Zel’dovich approximation in the linear regime. Bond
& Myers [17], and Eisenstein & Loeb [26] emphasized that this was because
they either ignored any external influences or because they did not include
the effects of the external tidal (quadrupolar) influences self-consistently. Once
these effects are appropriately included the resulting ellipsoidal collapse model
is indeed self-consistent (see also the recent detailed study of Desjacques [24]
of the environmental influence on ellipsoidal collapse).

For moderately evolved structures such as a Megaparsec (proto)cluster the
ellipsoidal model represents a reasonable approximation at and immediately
around the density peak. In the case of highly collapsed objects like galaxies
and even clusters of galaxies it will be seriously flawed. One dominant aspect
it fails to take into account are the all-important small-scale processes related
to the hierarchical substructure and origin of these objects. Nonetheless, the
concept of homogeneous ellipsoids has proven to be particularly useful when
seeking to develop approximate yet advanced descriptions of the distribution
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of virialized cosmological objects within hierarchical scenarios of structure
formation [17, 72, 75].

In many respects the homogeneous model is a better approximation for
underdense regions than it is for overdense ones. Overdense regions contract
into more compact and hence steeper density peaks, so that the area in which
the ellipsoidal model represents a reasonable approximation will continuously
shrink. By contrast, for voids we find that the region where the approximation
by a homogeneous ellipsoid is valid grows along with the void’s expansion.
While voids expand their interior gets drained of matter and develops a flat
“bucket-shaped” density profile: the void’s natural tendency is to evolve into
expanding regions of a nearly uniform density. The approximation is restricted
to the interior and fails at the void’s outer fringes because of its neglect of the
domineering role of surrounding material, such as the sweeping up of matter
and the encounter with neighbouring features.

Ellipsoidal Gravitational Potential

The model describes the evolution of a homogeneous ellipsoidal region with
a triaxially symmetric geometry, specified by its principal axes C1(t), C2(t)
and C3(t). The ellipsoid has a uniform matter density ρ(t), and density excess
δ(t).

In the presence of an external potential contribution the total gravitational
potential Φ(tot)(r) at a location r = (r1, r2, r3) in the interior of a homogeneous
ellipsoid may be decomposed into three separate (quadratic) contributions,

Φ(tot)(r) = Φu(r) + Φ(int)(r) + Φ(ext)(r) . (59)

A necessary condition for the ellipsoidal formalism to remain self-consistent is
that each of the three separate contributions retains a quadratic form. Higher
order contributions, also of the external potential, are ignored. The three sep-
arate contributions are:

• Homogeneous Cosmic Background
The potential contribution of the homogeneous background with universal
density ρu(t),

Φu(r) =
2
3
πGρu (r2

1 + r2
2 + r2

3) . (60)

• Internal Ellipsoidal Potential
The interior ellipsoidal potential Φ(int)(r), superimposed onto the homoge-
neous background,

Φ(int)(r) =
2
3
πGρu δ(t) (r2

1 + r2
2 + r2

3) +
1
2

∑
m,n

T (int)
mn rmrn ,

in which T
(int)
mn are the elements of the traceless internal tidal shear tensor.

The quadratic expression for Φ(int) assumes a simplified form in the coordinate
system defined by the principal axes of the ellipsoid.



374 R. van de Weygaert and J. R. Bond

Φ(int)(r) = πGρu δ
∑
m

αmr2
m , (61)

where the coefficients αm(t) are

αm(t) = R1(t)R2(t)R3(t)

∫ ∞

0

dλ

(R2
m(t) + λ)

∏3

n=1

(R2
n(t) + λ

)1/2
. (62)

The Poisson equation implies the αm’s obey the constraint
∑3

m=1 αm = 2. In
the case of a spherical perturbation all three αm’s are equal to 2/3, reproduc-
ing the well-known fact that it does involve a vanishing internal tidal tensor
contribution,

T (int)
mn =

∂2Φ(int)

∂rm ∂rn
− 1

3
∇2Φ(int) δmn = 2πGρu δ(t)

(
αm − 2

3

)
δmn .

• External Tidal Influence
The external gravitational potential Φ(ext). Assuming that the external tidal
field does not vary greatly over the expanse of the ellipsoidal mass element,
we may limit the external contribution to its quadrupolar components,

Φ(ext)(r) =
1
2

∑
m,n

T (ext)
mn rmrn . (63)

T
(ext)
mn are the components of the external (traceless) tidal shear tensor. By

default the latter is limited to its traceless contribtuion, the corresponding
(background) density is implicitly included in the (total) internal density,
ρu(t)(1 + δ(t)).

The external field is taken to be the smooth large-scale tidal field Tb,mn.
The latter is directly related to the traceless large scale (background) strain
tensor (57), with eigenvalues τm given by (see (71)),

τm = 4πGρu(t)λ′
vm(t) . (64)

where λ′
vm are the eigenvalues of the background anisotropic strain tensor

E ′
pk,ij at the location of the mass peak.

Ellipsoidal Evolution

The anisotropy of an initially spherically symmetric matter element in the pri-
mordial cosmic matter distribution is a direct effect of the external tidal force
field. As a result the principal axes of the configuration are the ones defined
by the external tidal tensor T

(ext)
mn . Both the external large-scale tidal forces

inducing the anisotropic collapse and the resulting internal one do strongly
enhance the anisotropic shape of the ellipsoid.
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The evolution of the ellipsoid is specified by three scale factors Ri, one
for each of the three principal axes. The boundary of the ellipsoid and the
overdensity evolve as

Ci(t) = Ri(t)Rpk , δ(t) =
a3

R1R2R3
− 1 . (65)

in terms of the initial (Lagrangian) radius Rpk. The evolution of the scale
factors Ri are determined by the gravitational acceleration along each of the
principal axes (see (59)). Including the influence of the cosmological constant
Λ, this translates into

d2Rm

dt2
= −4πGρu(t)

[
1 + δ

3
+

1
2

(
αm − 2

3

)
δ

]
Rm − τm Rm + ΛRm .

(66)
with αm(t) the ellipsoidal coefficients specified by the integral (62) and τm the
eigenvalue of the external (large-scale) tidal shear tensor T

(ext)
mn .

The collapse of the three axes of the ellipsoid will happen at different
times. The shortest axis will collapse first, followed by the intermediate axis
and finally by the longest axis. The shortest axis will collapse considerably
faster than that of the equivalent spherically evolving perturbation while full
collapse along all three axis will be slower as the longest axis takes more time to
reach collapse. In fact, the longest axis may not collapse at all. An illustration
of this behaviour can be found in Fig. 11. It shows the evolution of a slightly
overdense isolated ellipsoid, with initial axis ratios a1 : a2 : a3 = 1 : 0.9 :
0.8, embedded in a background Einstein-de Sitter Universe. Quantitatively
the expansion and subsequent contraction of each of the three axes can be
followed in Fig. 12. The superimposed blue curve represents the evolution
of the equivalent spherical overdensity. The righthand frame shows that this
development involves a continuous decrease of both axis ratios.

4.5 Ellipsoidal Collapse and External Influences

In order to properly model the nonlinear collapse of the features in the Cos-
mic Web it is essential to embed the nonlinear anisotropic collapse of mass
elements within the large-scale environment. A proper approximation, follow-
ing Bond & Myers [17], is that of assuming the large-scale tidal influence
to be largely linear and assuring that the initial conditions for the ellipsoid
asymptotically approach the Zel’dovich equation,

Rm(ti) = a(ti) {1 − D(ti)λm} ,

(67)
dRm

dt
(ti) = H(ti)Rm(ti) − a(ti)H(ti)f(Ωi)D(ti)λm ,
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Fig. 11. The evolution of an overdense homogeneous ellipsoid, with initial axis ratio
a1 : a2 : a3 = 1.0 : 0.9 : 0.9, embedded in an Einstein-de-Sitter background Universe.
The two frames show a time sequel of the ellipsoidal configurations attained by the
object, starting from a near-spherical shape, initially trailing the global cosmic ex-
pansion, and after reaching a maximum expansion turning around and proceeding
inexorably towards ultimate collapse as a highly elongated ellipsoid. Left: the evolu-
tion depicted in physical coordinates. Red contours represent the stages of expansion,
blue those of the subsequent collapse after turn-around. Right: the evolution of the
same object in comoving coordinates, a monologous procession through ever more
compact and more elongated configurations
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Fig. 12. The evolution of an overdense homogeneous ellipsoid, with initial axis ratio
a1 : a2 : a3 = 1.0 : 0.8 : 0.6, in an Einstein-de-Sitter background Universe. Left:
expansion factors for each individual axis; Right: axis ratios a2/a1 and a3/a1. The
ellipsoid axes are depicted as red curves. For comparison, in blue, the evolution of
an equivalent homogenous spherical overdensity
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in which λm are the eigenvalues of the Zel’dovich deformation tensor ψmn,
and D(t) is the linear density growth factor and f(Ω) the corresponding linear
velocity factor [62].

By using the implied relation between the eigenvalues of the external tidal
tensor τm and the large-scale tidal strain tensor Emn (64) the following equa-
tion of motion is obtained,

d2Rm

dt2
= −4πGρu(t)

[
1 + δ

3
+

1
2

(αm − 2
3
) δ + λ′

vm

]
Rm + ΛRm. (68)

While the smooth large-scale tidal field induces the anisotropic collapse of the
mass element, the subsequent nonlinear evolution differs increasingly from
the predictions of the linear Zel’dovich formalism (58). As can be seen in
Fig. 13 for nearly all conceivable (external) tidal shear ellipticities the nonlin-
ear ellipsoidal collapse involves a considerably faster collapse along all three
axes of an ellipsoid than that following from the Zel’dovich approximation
(58). Only for extremely anisotropic tidal configurations the Zel’dovich for-
malism would find the same collapse time for the longest axis of the mass
element.

Fig. 13. The collapse redshifts for the three ellipsoidal axes of the initial external
tidal shear ellipticity ev, assuming zero prolaticity pv, a linear extrapolated density
δ0 = 2 and a linear external tide approximation (68). The dashed curve shows
how poorly the Zel’dovich approximation fares: only for the extreme elongations
does it get the collapse redshift along the third axis right, while it is far off for
the other two directions. Also shown, by dotted lines, are the redshifts at which
an equivalent spherical overdensity reaches overdensity 170 (upper dotted line) and
complete collapse (lower dotted line). From Bond & Myers [17]. Reproduced with
permission of AAS
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4.6 Primordial Structural Morphology

The values of the (Zel’dovich) deformation eigenvalues λv1, λv2 and λv3 basi-
cally determine the (asymptotic) morphology of the resulting features, roughly
along the lines specified in Table 1: they function as cosmic shape parameters.

To get insight into the prevailing morphology in the cosmic matter distri-
bution it is necessary to assess the statistical and spatial distribution of the
shear eigenvalues. This will determine the overall morphology and geometry
of the cosmic density field at the “quasi-linear” stage – i.e. the prominence of
mutually interconnected flattened structures, denser elongated filaments and
dense compact clumps.

The first assessment of the statistical properties of the deformation tensor
in a primordial Gaussian random density fluctuation field is the seminal study
by Doroshkevich [25]. He derived the (unconditional) pdf for the eigenvalues
λ1, λ2 and λ3,

P (λ1, λ2, λ3) ∼ (λ1 − λ2)(λ1 − λ3)(λ2 − λ3)

× exp
{
− 15

2σ2

[
λ2

1 + λ2
2 + λ2

3 −
1
2
(λ1λ2 + λ1λ3 + λ2λ3)

]}
.

(69)

This yields a probability of 8% that all of the eigenvalues are negative, λ1 <
λ2 < λ3 < 0, predisposing the formation of a void. The probability that
matter elements have one or more positive eigenvalues is filament-dominated
weblike morphology is the generic outcome during the moderate quasi-linear
evolutionary phase for any scenario with primordial Gaussian perturbations
marked by relatively strong perturbations on large scales. The signs of the
eigenvalues will determine the (asymptotic) local geometry along the lines
specified in Table 1.

For the purpose of understanding the geometry of large scale structure we
also should take note of the fact that the values of the deformation tensor
eigenvalues are directly constrained by the local density,

Table 1. Asymptotic morphology: deformation eigenvalue conditions for different
asymptotic structural morphologies in the Cosmic Web

Structure Eigenvalue signatures

Peak λ1 > 0 ; λ2 > 0 ; λ3 > 0
Filament λ1 > 0 ; λ2 > 0 ; λ3 < 0
Sheet λ1 > 0 ; λ2 < 0 ; λ3 < 0
Void λ1 < 0 ; λ2 < 0 ; λ3 < 0
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δ̃ = (λv1 + λv2 + λv3) , (70)

in which δ̃ is the (linearly extrapolated) initial density contrast. In other
words, when we see a supercluster or other interesting feature we should assess
the conditional probability of the shape parameters for the relevant range of
density values. To this end it is helpful to introduce the shear ellipticity ev

and shear prolateness pv (see Bardeen et al. [6], Bond & Myers [17] 1996a),

ev =
λv1 − λv3

2
∑

i
λvi

, pv =
λv1 − 2λv2 + λv3

2
∑

i
λvi

. (71)

By implication ev and pv are constrained to ev ≥ 0 and −ev ≤ pv ≤ ev.
The evolution of a patch is spherically symmetric when the shear is isotropic
(λv3 = λv2 = λv1), i.e. when ev = pv = 0. When the collapse is predominantly
along one axis (λv3 > 0, λv2 ∼ λv1 < 0), the initial evolution is towards a
classical pancake by ev = pv. When a second axis is also collapsing (λv3 ∼
λv2 > 0, λv1 < 0) the result is filamentary, ev = −pv. In other words, extreme
sheet-like structures would have pv ≈ ev, extreme filaments pv ≈ −ev.

Via the quantities ev and pv we may get an idea of the prominence of
filamentary and sheetlike structures in the cosmic matter distribution by as-
sessing their conditional distribution in the primordial density field for a given
δ = νfσ. The combined statistical distribution P (ev, pv|νf ) of ev and pv and
of the prolaticity, P (pv|νf ), at an arbitrary field location with density are
Wadsley & Bond [87] and Bond [14],

P ({λv1, λv2, λv3}|νf ) = P (ev, pv|νf )

=
225

√
5√

2π
ev(e2

v − p2
v) ν

3
f e−15(νfev)2/2 − 5(νfpv)2/2 dev dpv . (72)

Figure 14 shows the iso probability contours of P (ev, pv|νf ) for a set of 6 dif-
ferent νf values. It manifestly demonstrates the distinct tendency of overdense
regions, in particularly those of moderate density, to be filamentary: pv < 0
or, equivalently, eigenvalue signature (λ1, λ2, λ3) = (− + +). The figure also
underlines the fact that higher peaks tend to be more spherical. This may
be quantitatively appreciated from the corresponding expectation values for
the the ellipticity and prolaticity of an arbitary field patch with local density
δ = νfσ [14],

〈ev|νf , field〉 ≈ 0.54ν−1
f ; Δev ≈ 0.18ν−1

f ,

(73)
〈|pv||νf , field〉 ≈ 0.18ν−1

f ; Δpv ≈ 0.22ν−1
f ,

which express the strongly declining nature of ellipticity and prolateness as a
function of patch density.

The gross properties of the Cosmic Web may therefore already be found in
the primordial density field. In this light it is particularly illuminating to study
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Fig. 14. The 95, 90 and 50% contours of the conditional probability for ellipticity ev

and prolateness pv subject to the constraint of a given field density value ν = δ/σ.
The figure demonstrates that even for high ν the shapes are triaxial and that for
lower density values there is a tendency towards filamentary configurations

the distribution of the deformation eigenvalue signatures as a function of den-
sity threshold νf = δf/σ. Figure 15 looks at two aspects of this question [66].
The dependence of structural morphology on the density threshold is given by
the probability of the eigenvalue signature on the threshold δ = νσ, P (sign|δ).
The left panel of Fig. 15 shows that for Gaussian fields at overdensties above
a critical δ = 1.56σ one encounters predominantly spherical-like mass con-
centrations (+ + +). By contrast, at lower density contrast 0 < δ < 1.56σ,
most of the initial density enhancements are in elongated filamentary bridges
(−++). Planar configurations (−−+) are less likely for any positive overden-
sities δ > 0. The related quantity P (δ|sign) gives us the density distribution
within different types of structure. While the average density of the filaments
in the initial configuration is equal to δ = 0.6σ, it is the δ ∼ 1.5 − 2σ ex-
cursions which are precursors of the rare prominent filaments. By contrast,
rare planar membrane-like configurations are expected only at lower over-
densities of δ ∼ 0.5 − 1σ. Mean densities for the given shear signatures are
〈δ〉 ≈ 1.66σ , 0.6σ ,−0.6σ, with dispersion Δδ ≈ 0.55σ.

4.7 Evolving Filamentary Morphology

Evidently, the primordial density field analysis only provides a superficial
impression of the emerging morphology of the Cosmic Web. What it does
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Fig. 15. Left panel: probability of the eigenvalue signature given the overdensity
threshold P (sign|ν), ν = δ/σ. Right panel: density distribution given the signature
type of shear tensor, P (ν|sign). From: Pogosyan et al. [66]

emphasize, and strongly so, is the prevalence of proto-filaments and proto-
clusters in the primordial density field.

This impression will only become more pronounced as nonlinear evolution
sets in. The salient filamentary nature of the nonlinear mass distribution seen
in large N-body simulations (see e.g. Fig. 1) can already be noticed when
following the early nonlinear evolution by means of the Zel’dovich mapping
(54). A telling illustration of this can be seen in Fig. 16. The left panel shows
an initial linear CDM overdensity field δL smoothed on a Gaussian scale Rb =
3.5 h−1 Mpc, with σρ = 0.65. The chosen density threshold is δL = 1σρ, the
level at which δL(r) percolates. The right panel shows δZ(r, t), the overdensity
of the resulting Zel’dovich map at a contour threshold δZ = 2, just above
where percolation occurs.

The Zel’dovich map in Fig. 16, evolved to σ8 = 0.7, clearly shows the dom-
inant filamentary morphology. It disproves the conventional tenet of pancakes
representing the dominant overdensity features. Also, it underlines the obser-
vation that the prominent filaments already existed in an embryonic – and
fattened – form in the initial conditions. As the nonlinear evolution proceeds
the cluster regions will collapse even further and occupy even less volume.
This will enhance the filamentary character of the cosmic matter distribution
even further.

Having argued and illustrated the principal filamentary nature of the Cos-
mic Web, largely on the basis of a local evaluation of the deformation eigen-
values, we need to assess the apparent coherence of these weblike structures
and their mutual relationship. Their overall geometry and topology can be
understood by adressing the relationship between the local values of the de-
formation tensor, responsible for the local morphology, and the global density
field.
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Fig. 16. Cosmic Web and Clusters. (Mean) constrained density field reconstructions
〈δL|20peaks〉 on the basis of the 20 most massive cluster peaks (patches) in a CDM
density field in a (50 h−1 Mpc)3 box with periodic boundary conditions. Lefthand:
initial linear CDM overdensity field δL(r), smoothed on a Gaussian scale RG =
3.5 h−1 Mpc with (iso)density threshold level δL = 1σρ, with σρ = 0.65, the level at
which δL percolates. The location, size and shape of the cluster patches is indicated
by means of the black ellipsoids, whose size is proportional to the peak scale Rpk and
orientation defined by the shear tensor orientation. Righthand: the corresponding
Zel’dovich map density field δZ of the smoothed initial conditions at a contour
threshold δZ = 2. Based on Bond et al. [18]. Reproduced with permission of Nature

This makes it necessary to turn to the concept of conditional multi-point
correlation functions in Lagrangian space (also see Bond [15]), i.e. the statis-
tically averaged density and displacement fields subject to various constraint
on the (tidal) shear at multiple points in the cosmic volume. The mathe-
matical language needed for evaluating the implied “protoweb” in the initial
density field is that of constrained random field theory, first introduced by
Bertschinger [10]. In the next Sect. 4.8 we will describe this formalism in
some necessary detail.

4.8 Constrained Random Field Formalism

A major virtue of the constrained random field construction technique [10,
35, 73, 84] is that it offers the instrument for translating locally specified
quantities to the corresponding implied global matter distribution.

Bertschinger [10] described how a set Γ of functional field constraints
Ci[f ] = ci, (i = 1, . . . ,M) of a Gaussian random field f(r, t) would translate
into field configurations for which these constraints would have the specified
values ci. Any such constrained field realization fc can be written as the sum
of a mean field f̄(x) = 〈f(x)|Γ〉, the ensemble average of all field realiza-
tions obeying the constraints, and a residual field F (x), embodying the field
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fluctuations characterized and specified by the power spectrum P (k) of the
particular cosmological scenario at hand,

fc(x) = f̄(x) + F (x) (74)

Bertschinger [10] showed the specific dependence of the mean field on the na-
ture Ci[f ] of the constraints as well as their values ci. In essence the mean field
can be seen as the weighted sum of the field-constraint correlation functions
ξi(x),

ξi(x) ≡ 〈f Ci〉 (75)

(where we follow the notation of Hoffman & Ribak [35]). Each field-constraint
correlation function encapsulates the repercussion of a specific constraint Ci[f ]
for a field f(x) throughout the sample volume Vs. For example, the field-
constraint correlation function for a constraint on the peculiar velocity or
gravity is a dipolar pattern, while a tidal constraint Tij effects a quadrupolar
configuration (see van de Weygaert & Bertschinger [84]). The weights for each
of the relevant ξi(x) are determined by the value of the constraints, cm, and
their mutual cross-correlation ξmn ≡ 〈CmCn〉,

f̄(x) = ξi(x) ξ−1
ij cj . (76)

In practice, it is usually beneficial to evaluate the constraint correlation func-
tion ξi(r, ξij and the mean field in Fourier space. For a linear cosmological
density field with power spectrum P (k) we have

ξi(r) =
∫

dk
(2π)3

Ĥi(k)P (k) e−ik·x

(77)

ξij =
∫

dk
(2π)3

Ĥ∗
i (k) Ĥj(k)P (k)

with Ĥi(k) the constraint i’s kernel (the Fourier transform of constraint Ci[f ])
and cj the value of this constraint.

The additional generation of the residual field F is a nontrivial exercise:
the specified constraints translate into locally fixed phase correlations. This
renders a straightforward random phase Gaussian field generation procedure
unfeasible: the amplitude of the residual field is modified by the local corre-
lation with the specified constraints. Hoffman & Ribak [35] pointed out that
for a Gaussian random field the sampling is straightforward and direct, which
greatly facilitated the application of CRFs to cosmological circumstances. This
greatly facilitated the application of CRFs to complex cosmological issues [44,
55, 69].

Van de Weygaert & Bertschinger [84], following the Hoffman–Ribak for-
malism, worked out the specific CRF application for the circumstance of sets
of local density peak (shape, orientation, profile) and gravity field constraints.
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With most calculations set in Fourier space, the constrained field realization
for a linear cosmological density field with power spectrum P (k) follows from
the computation of the Fourier integral

f(x) =
∫

dk
(2π)3

[
ˆ̃
f(k) + P (k) Ĥi(k) ξ−1

ij (cj − c̃j)
]

e−ik·x (78)

where the tilde indicates it concerns a regular unconstrained field realization f̃ .
One of the major virtues of the constrained random field construction tech-

nique is that it offers the instrument for translating locally specified quantities
into the corresponding implied global matter distributions for a given struc-
ture formation scenario. In principle the choice of possible implied matter
distribution configurations is infinite. Nonetheless, it gets substantially cur-
tailed by the local matter configuration. The influence of local constraints
is set by the coherence scale of matter fluctuations, a function of the power
spectrum of fluctuations.

While the CRF formalism is rather straightforward for idealized linear
constraints reality is less forthcoming. If the constraints are based on measured
data these will in general be noisy, sparse and incomplete. Wiener filtering
will be able to deal with such a situation and reconstruct the implied mean
field, at the cost of losing signal proportional to the loss in data quality (see
e.g. Zaroubi et al. [89]). A major practical limitation concerns the condition
that the constrained field is Gaussian. For more generic nonlinear clustering
situations the formalism is in need of additional modifications. For specific
situations this may be feasible [73], but for more generic circumstances this
is less obvious (however, see Jones & van de Weygaert 2008).

4.9 Shear Constraints

The Megaparsec scale tidal shear pattern is the main agent for the contraction
of matter into the filaments which trace out the cosmic web (see Figs. 18
and 19). For a cosmological matter distribution the close connection between
local force field and global matter distribution follows from the expression of
the tidal tensor in terms of the generating cosmic matter density fluctuation
distribution δ(r) [84]:

Tij(r) =
3ΩH2

8π

∫
dr′ δ(r′)

{
3(r′i − ri)(r′j − rj) − |r′ − r|2 δij

|r′ − r|5
}

− 1
2
ΩH2 δ(r, t) δij .

Constrained random field realizations immediately reveal the nature of the
density field realizations δ(r) that would generate a tidal field Tij at particu-
lar location r0. The effect of the local shear constraints on the density profile
around a position r0 may be seen in Fig. 17. The shape of the density contours
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Fig. 17. Constrained primordial density field 〈δ(r)|λ1, λ2, λ3〉 as a function of dis-
tance r in units of the filter scale Rf , in the three eigendirections. Left frame: shear
constraint signature (+ + +). Right frame: shear constraint signature (− + +).
The “filamentary” behaviour of the density in the neighbourhood of the point mani-
fests itself particularly in the density profile along the x-direction (top curve). From:
Pogosyan et al. [66]

clearly depends on the signature of the eigenvalues. The righthand frame does
reveal an increase in the density along one axis while falling off along the
remaining two. This is symptomatic of filamentary bridges that connect the
higher density regions where the shape of the density profile is more spher-
ical. In effect, the local shear signature defines the curvature of the density
isocontours up to a distance of several filter radii Rf

2.
Pursuing the filamentary configuration implied by the specified (− + +)

signature tidal shear, the 3-D density distribution around the location of the
specified constraint is shown in Fig. 19. The specified shear tensor is oriented
along the box axes. The field is Gaussian filtered on a (rather arbitrary) scale
of 2 h−1 Mpc. The implied mean field f̄ is shown in the 3 top panels. Each
panel looks along one of the main axes. The constraint clearly works out into
perfect global quadrupolar mass distribution. A representative realization of
a quadrupolar (CDM) cosmic matter distribution which would induce the
specified shear is shown in the second row of panels.

The corresponding maps of the tidal shear in the same region are shown
in the bottom row. Included are contour maps of the total tidal field strength.
Also we include bars indicating the direction and strength of the tide’s
compressional component3. Along the full length of the filament in Fig. 19

2 The information contained in the density curvature tensor itself is much more
local and less representative of the density behaviour at large distances from the
constraint point.

3 On the basis of the effect of a tidal field, we may distinguish at any one location
between “compressional” and “dilational” components. Along the direction of a
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Fig. 18. Constrained field construction of initial quadrupolar density pattern in a
SCDM cosmological scenario. The tidal shear constraint is specified at the box centre
location, issued on a Gaussian scale of RG = 2 h−1 Mpc and includes a stretching
tidal component along the x- and y-axis acting on a small density peak at the
centre. Its ramifications are illustrated by means of three mutually perpendicular
slices through the centre. Top row: the “mean” field density pattern, the pure signal
implied by the specified constraint. Notice the clear quadrupolar pattern in the y-
and z-slice,directed along the x- and y-axis, and the corresponding compact circular
density contours in the x-slice: the precursor of a filament. Central row: the full
constrained field realization, including a realization of appropriately added SCDM
density perturbations. Bottom row: the corresponding tidal field pattern in the
same three slices. The (red) contours depict the run of the tidal field strenght |T |,
while the (green) tidal bars represent direction and magnitude of the compressional
tidal component in each slice (scale: RG = 2 h−1 Mpc). From van de Weygaert [83]
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Fig. 19. The emergence of a filament in an SCDM structure formation scenario.
Lefthand column: density/particle distribution in z-slice through the centre of the
simulation box. Righthand column: the corresponding tidal field configurations,
represented through the full tidal field strength |T | contour maps (red), as well
as the corresponding compressional tidal bars (scale: RG = 2 h−1 Mpc). From top
to bottom: primordial field, a = 0.2 (visible emergence filament), present epoch.
Note the formation of the filament at the site where the tidal forces peaked in
strength, with a tidal pattern whose topology remains roughly similar. From van de
Weygaert [83]
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we observe a coherent pattern of strong compressional forces perpendicular to
its axis.

Filaments and Peaks

The dynamical evolution in and around the (proto) filament is depicted in
Fig. 19. It shows the emergence of a (CDM) filament with the density/particle
distribution along the spine of the emerging filament (lefthand column) and
the corresponding tidal configuration (righthand column). The top row cor-
responds to the primordial cosmic conditions, the central row to a = 0.2 and
the bottom row to a = 0.8. At a = 0.2 we recognize the first vestiges of an
emerging filament, at a = 0.8 it has indeed condensed as the most salient
feature in the mass distribution. Also, we see that the filament forms along
the ridge seemingly predestined by the primordial tidal configuration (Figs. 19
and 20).

The figure also clarifies the essence of the link between filaments and clus-
ters. At the tip of the evolving filament we observe the emergence of massive
cluster patches. They naturally arise in and around the overdense peaks in
the primordial quadrupolar mass distribution implied by the tidal shear con-
straint. These overdense protoclusters were the source of the specified shear.
A quadrupolar matter configuration will almost by default evolve into the
canonical cluster-filament-cluster configuration so prominently recognizable
in the observed Cosmic Web.

The two main conclusion from these observations are the embryonic pres-
ence of the weblike features in the primordial density field and the intimate
link between the cluster distribution and the filigree of filaments as most out-
standing structural aspect of the Cosmic Web (see Fig. 20).

4.10 Nodes of the Cosmic Web: Peak Patches

Clusters represent the rare events in the cosmic matter distribution. In the
above we have established that they are the ultimate source for the anisotropic
contraction of filaments and form the nodes that weave the cosmic web
throughout the Universe.

The study of local one-point shear constraints has lead to the conclusion
that filaments are indeed the naturally dominant structural feature in the cos-
mic matter distribution. The remarkable size of the filaments is not, however,

“compressional” tidal component Tc (for which Tc < 0.0) the resulting force field
will lead to contraction, pulling together the matter currents. The “dilational”
(or “stretching”) tidal component Td, on the other hand, represents the direction
along which matter currents tend to get stretched as Td > 0. Note that within
a plane, cutting through the 3-D tidal “ellipsoid”, the tidal field can consist
of two compressional components, two dilational ones or – the most frequently
encountered situation – of one dilational and one compressional component.
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Fig. 20. The relation between the cosmic web, the clusters at the nodes in this
network and the corresponding compressional tidal field pattern. It shows the matter
distribution at the present cosmic epoch, along with the (compressional component)
tidal field bars in a slice through a simulation box containing a realization of cosmic
structure formed in an open, Ω◦ = 0.3, Universe for a CDM structure formation
scenario (scale: RG = 2 h−1 Mpc). The frame shows structure in a 5 h−1 Mpc thin
central slice, on which the related tidal bar configuration is superimposed. The
matter distribution, displaying a pronounced weblike geometry, is clearly intimately
linked with a characteristic coherent compressional tidal bar pattern. From: van de
Weygaert [83]

derivable from constraints at a given single point. To learn more about the
strength, structure and connections of the weblike features we need to inves-
tigate their dependence on the location, nature and structure of clusters. For
this we need to turn to correlations constrained by at least two rare peak-
patches. In order to fully grasp their impact on the overall morphology of the
cosmic web we first need to delve into their internal structure.

Clusters at any cosmic epoch are the product of a hierarchical buildup
of structure in and around the primordial protocluster, peaks in the primor-
dial mass distribution. In Sect. 3.3 we have discussed in some detail how
the anisotropic nature of collapse of (sub)clumps can be included by means
of a moving collapse barrier in a local extended Press–Schechter description
of hierarchical evolution. A more physical image would also try to take into
account the matter distribution in and around the primordial peak. This is
achieved by the peak patch formalism of Bond & Myers [17].

The peak-patch formalism exploits the full potential of the peaks formalism
[6] by using adaptive spatial information on both small and large scales to
construct the hierarchical evolution of collapsing protocluster peak patches.



390 R. van de Weygaert and J. R. Bond

The entire patch moves with a bulk peculiar velocity and is acted upon by
external tidal fields, determined by long-wavelength components of the density
field.

Peak Patch: Hierarchical & Anisotropic Collapse

The formation of a cluster around an overdensity is approximated as the com-
bination of the linear evolution of a smooth large-scale background field and
the coupled nonlinear evolution of the mass element itself, and its substruc-
ture. Clusters are identified with the peaks in the primordial Gaussian field
on an appropriately large smoothing scale RG. This scale is determined by
filtering the field around a particular peak’s location over a range of radii. By
means of the ellipsoidal collapse model, including the influence of the external
tidal field, the collapse time of the ellipsoidal configuration is determined. At
any one cosmic epoch the peak’s scale Rpk is identified with the largest scale
Rb on which, according to the homogeneous ellipsoidal model, it has collapsed
along all three dimensions.

The mass of the peak is

Mpk =
4
3
πρua

3 R3
pk . (79)

Because the formalism works within the spatial mass distribution itself it al-
lows the identification and dissection of overlapping (collapsed) peak patches.
Usually this concerns peaks of a different scale. Small-scale peaks may be
absorbed/merged with larger peaks with which they largely overlap (half-
exclusions). If they only partially overlap, with their centers outside each
others range, one may seek to define a proper prescription to divide up the
corresponding mass (binary exclusion/reduction). The resulting mass spec-
trum of clumps adheres closely to the predictions of the extended Press–
Schechter formalism and to the results of N-body simulations.

A major virtue of the peak-patch formalism is that the spatial distribution
of the patches may be followed in time. Upon having identified the patches at
their original Lagrangian location, they are subsequently displaced towards
their Eulerian position (most conveniently by means of the Zel’dovich formal-
ism). A typical result is shown in Fig. 21 (from Platen et al. [64]), a nice
illustration of how narrowly collapsed peaks trace the cosmic web.

Anatomy of a Peak

Following the differentiation between nonlinearly evolving short wavelength
contributions δf(x) and linearly evolving long-wavelength contributions δb(x)
(see (42)), we can distinguish three contributions to a peak’s structure and
dynamics,

δ(x) = δ̄b(x) + Fb(x) + Ff(x)
= δ̄b(x) + Fb(x) + δf(x) (80)
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Fig. 21. The distribution of peak patches for a realization of a SCDM density field in
a 100 h−1 Mpc box. The lefthand image is a slice through the 3-D matter distribution.
The blobs are collapsed peaks, their size related to their spatial extent/mass. Each
patch is moved from its Lagrangian position by means of the Zel’dovich formalism.
The gray edges are the paths followed by each of the patches. The bottom insert
zooms in on one of the regions, offering a more distinct impression of the size of
each of the patches. Image courtesy of Erwin Platen

One concerns the mean field structure δ̄b(x) of the cluster peak specified on a
scale Rb and formally corresponds to the ensemble average of all peaks with
the specified properties. Because the peak is embedded within a fluctuating
(large-scale) field, there is also a residual fluctuating large-scale contribution
Fb(x). In and around the peak the latter is heavily affected by the peak’s
presence in that it is hardly existent or at least extremely quiescent in its
neighbourhood. The internal substructure of the peak patch mainly consists
of the short wavelength contribution δf(x). The latter is hardly affected by the
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presence of the peak. While formally constrained by the peak’s presence, the
resulting residual contribution Ff(x) is mostly a pure unconstrained Gaussian
random field.

The individual components contributing to the total density field around
a primordial cluster peak are shown in Fig. 22 (from Bond & Myers [17]). The
structure of the peak on a is shown by means of density field contours and pe-
culiar velocity field vectors. The peak’s structure was specified on a Gaussian
scale of RG = 5 h−1 Mpc. The solid circle indicates the corresponding peak
scale Rpk = 10 h−1 Mpc. The overall triaxial structure of the peak is deter-
mined by the bakcground mean field shown in the top lefthand panel. The
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Fig. 22. The individual contributions to the structure (density field contours) and
peculiar velocity field (arrows) in and around a density peak. The first three panels
show the (a) large-scale mean field δb, (b) the large-scale variance field Fb, which
is extremely quiescent in the neighbourhood of a peak, and (c) the small-scale field
δf responsible for subclumps within the medium. Adding them altogether produces
(d) the total field around the density peak. In (a) and (b) the contours increase by
factors of 2 from the minimum contour at fc/2, where fc = 1.69 is the critical contour
for spherical tophat collapse. The displacement arrows are scaled for appearance,
and only one in 12 are sampled. Panels (c) and (d) start at the fc contour level
for positive densities and at 2fc for negative ones. The peak was constrained to
have νpk = 2.45, ev,pk = 0.14 and v1,pk = 0.46σv on a Gaussian smoothing scale
of RG = 5 h−1 Mpc. The circle at at 10 h−1 Mpc is the average Rpk associated with
Gaussian peaks at this filter scale. From: Bond & Myers [17]. Reproduced with
permission of AAS
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velocity vectors delineate the expected shear flow around the peak. Because
the specified peak constraints essentially fully specify the structure of the peak
on the smoothing scale the background variance field Fb(x) is extremely qui-
escent (top righthand frame). The small-scale residual field (bottom lefthand
frame) includes two subclumps, one of them rather extended. Adding all com-
ponents together yields the total structure in and around the peak (bottom
righthand frame).

The small-scale structure in and around the peak may vary considerably
from one realization to another even though the cluster’s large scale structure
remains the same. The global history and fate of the peak, however, are largely
specified by the large-scale anisotropic tidal shear and bulk flow.

4.11 Molecular View of the Cosmic Web

In the observed galaxy distribution “superclusters” are often filamentary
cluster-cluster bridges and the most pronounced ones will be found between
clusters of galaxies that are close together and which are aligned with each
other. Very pronounced galaxy filaments of which the Pisces-Perseus super-
cluster chain is a telling example are almost inescapably tied in with a high
concentration of rich galaxy clusters. The Cosmic Web theory expands the
observation of the intimate link between clusters and filaments, described in
some detail in Sect. 4.9, to a complete framework for weaving the cosmic web
in between the clusters in the cosmic matter distribution.

The Cosmic Web Theory

In the language of the crf formalism discussed in Sect. 4.8 the filamen-
tary bridges in between two peak patches should be regarded as “correla-
tion” bridges. The implied constraint correlation function (or mean field)
ξi(r) = 〈δ|2pks〉 defines a protofilament, along the lines seen in Fig. 18. These
correlation bridges will be stronger and more coherent as clusters are nearer
than the mean cluster separation. Because clusters are strongly clusters and
statistically biased [7, 40] there are many cluster pairs evoking strong filamtary
bridges.

The filament bridge will break if the separation of the clusters is too large,
due to diminishing amplitude of the correlation ξi(r) = 〈δ|2pks〉. Such clusters
will be isolated from each other, unless there is a cluster in between to which
both have extended their filamentary bridges. As a result, the typical scale of
a segment of the filamentary network in a CDM type scenario will be in the
order of ∼ 30 h−1 Mpc.

This brings us to the aspect of establishing the weblike network charac-
terizing the observed galaxy distribution and matter distribution in computer
simulations. Consider laying down the rare cluster peaks in the cosmic matter
distribution according to the clustering pattern of peak-patches which be-
come clusters when they evolve dynamically. The correlation bridges arche
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from cluster to cluster in much of the domain, and tehse dynamically evolve
to filaments, creating the network and containing the bulk of the mass.

The order in which the physically significant structures arise is basically
the inverse of that in the classical pancake picture: first, high-density peaks,
then filaments between them and, possibly, afterwards the walls. The latter
should be seen as the rest of the mass between the voids.

Outlining the Web

Figure 23 convincingly demonstrates the viability of the cosmic web theory by
illustrating the excellent reconstruction of the primordial density field implied
by the presence of a set of selected protocluster peaks. The figure concerns a
CDM scenario realization within a comoving region of 50 h−1 Mpc (the same
box as in Fig. 16). Within this volume the peak patches are identified and
rank-ordered in mass.

Of each peak patch the value of the overdensity, the shear tensor Eb,ij and
displacement sb are measured, at their location rpk and averaged over the
peak-patch size Rpk. In addition to the in total 9N constraints for N peak
patches, the extremum requirement of a vanishing density gradient ∇δb = 0
at rpk adds a further 3N constraints. On the basis of the selection of the N
rarest and most massive peak patches the mean (primordial) field realization
is determined following the constrained field formalism outlined in Sect. 4.8.
The 12N peak constraints and the locations of the N peaks result in a mean
initial field 〈δL|Npeaks〉 (76).

We compare the mean field realizations implied by the 5 most massive
peak patches, that by the 10 most massive peaks and for the 20 most peaks.
In the boxes in the lefthand column of Fig. 23 we have indicated their loca-
tions by black ellipsoids of overall size proportional to Rpk and shape defined
by the shear tensor orientation, with the shortest axis corresponding to the
highest shear eigenvalue. The corresponding mean field density field is repre-
sented by isodensity contours at a level δL = 1σρ, where δL is smoothed on a
scale of 3.5 h−1 Mpc. The righthand frames show the Zel’dovich maps of these
smoothed initial conditions.

A comparison with Fig. 16 shows the excellent reconstruction obtained
by adding in the 20 most massive peaks. Also we see that the reconstruc-
tion improves continuously as more and more peaks are added. Some strong
bridges seen in the 20 peak reconstruction 〈δL|20pks〉 are not as evident in
the 〈δL|10pks〉 field, although they emerge at lower thresholds.

Web Bridges: Shear, Distance and Orientation

The observations discussed above show that a list of rank-ordered peak-
patches is a powerful way to maximally compress the information stored in
the initial conditions. They also show what is essential for defining structures
on the basis of a modest set of local measurements. That the specification
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Fig. 23. Building the Cosmic Web with clusters. How adding clusters gradually
defines the details of the Cosmic Web. (Mean) Constrained density field reconstruc-
tions 〈δL|Npeaks〉 on the basis of the N most massive cluster peaks (patches) in a
CDM model of cosmic structure formation. The volume is a (50 h−1 Mpc)3 box with
periodic boundary conditions. The lefthand column frames contain the initial linear
CDM overdensity field δL(r), smoothed on a Gaussian scale RG = 3.5 h−1 Mpc with
(iso)density threshold level δL = 1σρ, with σρ = 0.65, the level at which δL per-
colates. The location, size and shape of the cluster patches are indicated by means
of the black ellipsoids, whose size is proportional to the peak scale Rpk and orien-
tation defined by the shear tensor orientation. The righthand column contain the
corresponding Zel’dovich map density field δZ of the smoothed initial conditions at
a contour threshold δZ = 2. Top row: the constrained field 〈δL|5peaks〉 for 5 peaks,
〈δL|10peaks〉 for 10 peaks and 〈δL|20peaks〉 for 20 peaks. Based on Bond et al. [18].
Reproduced with permission of Nature
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Fig. 24. Cluster Shear and the Cosmic Web. How cluster tidal shear defines the
filigree of the Cosmic Web. Comparison between a (mean) cosmic density field gen-
erated by the 10 most massive cluster peaks with shear constraints (top show) and
without shear constraints (bottom row), for a CDM simulation in a (50 h−1 Mpc)3

box with periodic boundary conditions. Left row: isodensity contours of the lin-
ear CDM overdensity field δL(r), smoothed on a Gaussian scale RG = 3.5 h−1 Mpc
with (iso)density threshold level δL = 1σρ, with σρ = 0.65. The location, size and
shape of the cluster patches are indicated by means of the black ellipsoids, whose
size is proportional to the peak scale Rpk and orinetation defined by the shear ten-
sor orientation. The righthand column contain the corresponding Zel’dovich map
density field δZ of the smoothed initial conditions at a contour threshold δZ = 2.
Both initial density field and Zel’dovich map for the non-shear constraint situation
(bottom row) do have a more bloblike character, and does hardly contain the mat-
ter bridges characterizing the Cosmic Web. Based on Bond et al. [18]. Reproduced
with permission of Nature

of the tidal shear at the peak patches is of fundamental importance for the
succesfull reconstruction of the Cosmic Web may be appreciated from Figs. 23
and 24. By discarding the tidal shear measurements at the peak patches and
only taking into account their overdensity and velocity the implied mean field
loses its spatial coherence. Instead of being marked by strong filamentary
bridges the mean field will have a more patchy character. It demonstrates our
earlier arguments that the tidal shear evoked by the inhomogeneous cosmic
mass distribution is of crucial and fundamental importance in defining the
Cosmic Web.
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The strength and the coherence of the correlation bridges depend strongly
on the mutual distance of the clusters and their alignment. The strongest
filaments are between close peaks whose tidal tensors are nearly aligned.
This may be inferred from the illustration of the 2-point correlation func-
tion in Fig. 25: a binary molecule image with oriented peak-patches as the
atoms. The initial conditions in this figure have been smoothed and Zel’dovich
mapped, producing a telling illustration of the molecular picture of large scale
structure.

The bridge between two clusters will gradually weaken as the separation
between the clusters increases. Strong filaments extend only over a few La-
grangian radii of the peaks they connect. It is in the nonlinear mass distribu-
tion that they occur so visually impressive because the peaks have collapsed
by about a factor 5 in radius, leaving the long bridge between them, which
themselves have also gained more contrast because of the decreases in its
transverse dimension.

Another important factor influencing the coherence and strength of the
connecting filamentary bridges are the mutual alignments between the shear
tensors of the cluster peaks. When we vary the shear orientation from perfect
alignment towards misalignment the strong correlation bridge between two
clusters will weaken accordingly. The top two panels of Fig. 25 show the dif-
ference as two peaks, of equal mass and orientation, are oriented differently.
In the lefthand panel they are perfectly aligned, evoking a strong filamentary
bridge in between them. When the same clusters are somewhat misaligned,
each by ±30◦ with respect to their connecting axis, the bridge severely weak-
ens. The bridge would break at an isodensity level of δl = 1, althougn it
would remain connected at a lower level, for a misalignment of ≈ ±45◦. In
the most extreme situation of a misalignment by ±90◦ the bridge would be
fully broken, no filament would have emerged between the two clusters. The
reason for the strong filaments between aligned peaks is that the high degree
of constructive interference of the density waves required to make the rare
peak-patches, and to preferentially orient them along their connecting axis
leads to a slower decoherence along that axis than along the other axes. This
in turn corresponds to a higher density.

Important for the overall weblike structure in the matter distribution is the
fact that there is a distinct tendency of clusters to be aligned with each other.
The alignment of the orientations of galaxy haloes and clusters with larger
scale structures such as clusters, filaments and superclusters have been the
subject of numerous studies (see e.g. Binggeli [12], Bond [13], Rhee et al. [68],
Plionis & Basilakos [65], Basilakos et al. [8], Trujillo et al. [82], Aragón-Calvo
et al. [2], Lee & Evrard [50], Park & Lee [60], Lee et al. [52]). The peak-patch
theory [17] offers a natural explanation for these alignments by showing that
it is statistically likely that, given a specific orientation of the shear tensor for
a cluster peak, neighbouring cluster peaks will be aligned preferentially along
its axis and have shear tensors aligned with it.
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Fig. 25. The molecular picture of large scale structure: “bonds” bridging clusters.
Shown are isodensity contours of the Zel’dovich map of the smoothed initial density
field. The upper panels show a two-point mean (constrained) field 〈δL|2peaks〉 con-
strained by two oriented clusters separated by 40 h−1 Mpc. Left one is fully aligned,
the right pair is partially aligned. The next four panels show three-point (middle
row) and four-point mean fields for different peak-patch orientations taken from the
simulation. Notice the lower density contrast webbing between the filaments. From
Bond et al. [19]
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Walls and Voids

Upon expanding our inspection in Fig. 25 from 2-peak correlations to three-
point and four-point mean fields we see the emergence of low density contrast
webbing between the filaments, membrane-like sheets. Stronger membranes
will be seen in the regions between the filaments when a number of clusters
is close together. Although these are sheetlike structures they are not the
classical pancakes. In the molecular view of cosmic structure formation the
walls are a mere secondary product.

Voids also do play a significant role in the cosmic web. The formalism
is similar, be it reversed, when concentrating on the voids. Void patch con-
straints create high mean field regions in between them, just where less rare
peak patches reside. However, using voids are not as precise a way to get
the filamentary structure evoked by the peaks. An upcoming study (Platen
et al. [64]) adresses their role and structure in considerably more detail.

Cosmic Scenario

Overall, it is the highly clustered and mutually aligned nature of the clus-
ter distribution which ascertains the salient and coherent weblike nature of
the cosmic matter distribution. In turn, this suggests a dependence of the
morphology and structure of the cosmic web on the cosmological scenario.

Its pattern and prominence does indeed depend upon the shape of the
primordial power spectrum, in particular on the power spectrum index n(k) =
d lnP (k)/d ln k. The examples which are shown in the figures concern a CDM
spectrum with neff ≈ −1.2 on cluster scales. When the spectrum is steepened
clusters become less clustered and the coherence of the web is lost. Although
some filaments will remain they will be weaker and shorter. On the other
hand, when we flatten the spectrum to n(k) < −2, the clusters become more
clustered, so that the coherence is more pronounced and the filaments are
both strengthened and widened.

4.12 Hierarchical Filament Assembly

In the previous sections we have delved in great depth into the nature and
origin of filamentary and sheetlike features in the cosmic web. We have not
yet paid a lot of attention to their hierarchical development. In the reality of
the nonlinear world the collapse and formation of weblike patterns is consid-
erably more complex. Taking the specific example of an emerging filament,
its formation will involve the gradual assembly of small-scale filaments and
virialized low mass clumps into a coherent elongated feature.

Figure 26 gives an impression of the intricacies of filament formation
Aragón-Calvo [1]. It involves a ΛCDM scenario. The initial configuration con-
sists of a myriad of small-scale filaments, with a large scatter in orientation.
As time proceeds these small filaments start to merge into larger filaments,
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z = 0.5 z = 0

Fig. 26. The hierarchical evolution of weblike features: the formation of a filament
in an N-body simulation of structure formation in a LCDM Universe. Following
the emergence of small-scale filaments, we observe the gradual merging into ever
larger entities, culminating in a large massive and dense filament running along the
diagonal of the simulation box. Image courtesy of Miguel Aragón-Calvo
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preceded by a gradual change of orientation along that of the gradually un-
folding large-scale elongated mass concentration running along the diagonal
of the box. Finally, all structure ends up in the massive filamentary feature
that emerged out of the initially merely faintly visible large-scale overdensity.
The figure not only shows the hierarchical character of the process, but also
the dominant tidal influence of the large-scale filament which first appears to
orient substructures along its main axis before gradually absorbing them. It
illustrates the tendency of matter to contract into a sharp filamentary network
already defined in the primordial tidal shear field.

The morphology of the emerging filaments strongly depend on the gener-
alized power spectrum slope n(k) at the corresponding mass scale (also see
Sect. 4.11). For high values n ≈ −0.5 – i.e. for subgalactic scales within the
ΛCDM scenario – a rather grainy feature will emerge. Many small scale clumps
will have fully collapsed and virialized before they get absorbed into the larger
contracting filament. In a scenario with n(k) = −2, on the other hand, the
contracting filament will be collapsing while the small scale objects within
its realm may not yet have fully settled. Often these have not yet even fully
virialized and may still reside in a stage with a pronounced anisotropic geom-
etry. Such scenarios will produce a coherent large-scale filaments in which the
internall small-scale structure will not have a pronounced appearance. Most
dramatic will be the situation for n(k) = −3, the asymptotic situation in
which fluctuations over the full range of scale will undergo contraction and
collapse at the same time.

The morphology of filaments, as well as sheets, will also be influenced by an
additional effect, that of the diffusion of relative dynamical timescales between
different mass scales. Anisotropic collapse will involve a speeding up of the one-
dimensional collapse of an object, and even often a faster collapse along the
medium axis as the object contracts into a filament, but a considerably slower
formation time in terms of full three-dimensional collapse and virialization.
This will bring the formation time of halos closer to that of the embedding
elongated filaments. As a result, the latter will appear to be more coherent
than a simple hierarchical analysis on the basis of clump formation would
imply.

Finally, the morphology of filaments will also be considerably affected by
nonlinear effects. The (extended) Press–Schechter type descriptions involve
highly idealized local approximations. They discard the nonlinear interactions
between the features forming at different scales.

One particular aspect is that of the consequence of alignments between
peaks and the surroundings. The primordial alignments get significantly am-
plified by the subsequent infall of clumps from the surroundings. A few nonlin-
ear effects may be identified. The filaments act like transport channels of the
emerging cosmic web: matter and clumps of matter migrate along the axis
of filaments towards highly compact clusters at the nodes of the web. The
morphology and nature of filaments – strong, dominating, large and coher-
ent or having the appearance of short, weak, and erratic hairlike extensions
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connected to nearby peaks – will be of decisive influence over aspects like the
angular distribution of clumps which fall into a cluster. van Haarlem & van
de Weygaert [86] found that clusters appear to orient themselves towards the
direction along which the last substantial clumps fell in. The exclusive and
continuous infall of clumps along the spine of dominating filament will there-
fore induce a strong alignment of cluster orientation, its substructure and the
surroundings.

4.13 Anisotropic Excursions

Some aspects of the hierarchical assembly of filaments may be understood
within the context of the excursion set formalism described above (Sect. 3.4).
Shen et al. [72] did seek to extend the excursion formalism to filamentary
and planar structures by defining critical density thresholds for the collapse
of filaments and walls. In this they invoked the moving barrier description
for nonspherical collapse of ellipsoidal halos that was introduced by Sheth
et al. [75] (see (32)).

Their description invokes the homogeneous ellipsoid model to obtain es-
timates for the collapse times of walls and filaments. In addition to the full
three-dimensional ellipsoidal collapse of halos this involves the specification of
collapse times and barriers for the one-dimensional collapse of sheets and two-
dimensional filaments. Collapse along the shortest axis of an ellipsoid proceeds
more rapidly than the equivalent spherical collapse [38, 88]. The corresponding
moving barrier for the formation of a sheet does reflect this in involving the
lowest density threshold values (see Fig. 27). The threshold would decrease
towards smaller masses, implying the rapid formation of low mass sheetlike
objects. By contrast the barrier for filament formation would almost be con-
stant over a sizeable range of mass while the barrier for full three-dimensional
collapse does reflect the strong influence of tidal influences for small mass
halos: with respect to their higher mass peers they form relatively late (see
Fig. 27).

fec,w(σ, z) ≈ fsc(z)

{
1 − 0.56

[
σ2(M)
f2

sc(z)

]0.55
}

fec,f (σ, z) ≈ fsc(z)

{
1 − 0.012

[
σ2(M)
f2

sc(z)

]0.28
}

≈ fsc(z) ,

(81)

fec,f (σ, z) ≈ fsc(z)

{
1 + 0.45

[
σ2(M)
f2

sc(z)

]0.61
}

Although this description may provide a reasonable impression of the hi-
erarchical buildup of the cosmic web, it almost certainly involves a strong



Clusters and the Theory of the Cosmic Web 403

σ (M )

δ

sheet

filament

halo

0

Fig. 27. Example of an excursion random walk (solid curve) crossing the barri-
ers (dotted curves) associated with sheets, filaments and haloes (bottom to top,
see (82)). Plotted is the density perturbation δ(M) on a mass scale M versus the
corresponding σ(M) (recall that σ(M) is a decreasing function of mass M). The
fraction of walks that first cross the lowest (sheet) barrier at σ(Ms), then first cross
the filament barrier at σ(Mf ) and finally cross the highest (halo) barrier at σ(Mh)
represents the mass fraction in halos of mass Mh that are embedded in filaments of
mass Mf > Mh, which themselves populate sheets of mass Ms > Mf . The precise
barrier shapes depend on the collapse model. From Shen et al. 2006. Reproduced
with permission of AAS

oversimplification. The implicit local description of the excursion set formal-
ism may break down for features whose collapse is thoroughly influenced by
the surrounding matter distribution, so strongly emphasized by the Cosmic
Web. Also the strong nonlinear effects that play a role in the shaping of fila-
mentary features van Haarlem & van de Weygaert [86] may not be sufficiently
included in this description. Finally, recent work has shown that a definition
of filaments on the basis of density arguments is hazardous: filaments have a
considerable range of densities, at least in the present day universe Aragón-
Calvo [1], Aragón-Calvo et al. [3], Hahn et al. [31]. An analytical framework
that implicitly includes nonlocal effects will offer a better understanding of
the hierarchical formation of filaments, bringing us back to the peakpatch
formalism [17].

4.14 Filaments Versus Walls

In N -body simulations as well as in galaxy redshift distributions it are in
particular the filaments which stand out as the most prominent feature of the
Cosmic Web. It even remains unclear whether walls are even present at all.
Some argue that once nonlinear clustering sets in the stage in which walls form
is of a very short duration or does not occur at all: true collapse would pro-
ceed along filamentary structures [11, 36, 70]. Indeed, it may be argued that
in the primordial density field overdense regions subject to tidal shear con-
straints are more filamentary than sheetlike, and become even more so in the
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quasi-linear regime [18]. There is also a practical problem in identifying them:
walls have a considerably lower surface density than filaments. This is exac-
erbated by the lack of available objective feature detection techniques. Very
recent, the analysis of an N -body simulation by means of the new Multiscale
Morphology Filter technique did manage to identify walls in abundance [2].
Another indication is that the dissipative gaseous matter within the cosmic
web partially aggregates in walls with low overdensities [41]. This argues for
the presence of moderate potential wells tied in with dark matter walls.

5 Conclusion: Clusters and the Cosmic Web

In these notes we have reviewed the theoretical framework for the formation
of the Cosmic Web in hierarchical scenarios of structure formation. Particular
attention was given to the crucial role of clusters within defining the weblike
network. They are the main source for the tidal shear field responsible for the
spatial outline and dynamical evolution of the prominent filaments and their
less pronounced peers, sheetlike membranes.

We wish to conclude our exposé on the connection between the Cosmic
Web and the spatial distribution with the quote from Bond & Myers [17]
summarizing the essence of what the intrinsic role and identity of clusters is:

“flowing peak patches at which grand constructive interferences in
density and velocity waves mark out the sites of collapse. . . . radiat-
ing outward from the peak-patch core are filaments and sheets that
too are rare. The structure may finally fade into the root-mean-square
fluctuations in the medium as coherence in the phases fades into ran-
domness. Or the structure may blend into another peak patch, for rare
constructive interferences tend to be clustered.”
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1 Introduction

One of the most striking examples of a physical system displaying a salient
geometrical morphology, and the largest in terms of sheer size, is the Universe
as a whole. The past few decades have revealed that on scales of a few up to
more than a hundred Megaparsec, the galaxies conglomerate into intriguing
cellular or weblike patterns that pervade the observable cosmos.

The key structural components of the galaxy and cosmic mass distribution
(see Fig. 1),

• Clusters
• Filaments
• Sheets/Walls
• Voids

are not merely randomly and independently scattered features. On the con-
trary, they have arranged themselves in a seemingly highly organized and
structured fashion, the Cosmic Foam or Cosmic Web. They are woven into
an intriguing foamlike tapestry that permeates the whole of the explored Uni-
verse. The vast under-populated void regions in the galaxy distribution rep-
resent both contrasting as well as complementary spatial components to the
surrounding planar and filamentary density enhancements. At the intersec-
tions of the latter we often find the most prominent density enhancements in
our universe, the rich clusters of galaxies (see Fig. 1).

In these notes we will delve into the observational and morphological as-
pects of the Cosmic Web. In the accompanying manuscript (van de Weygaert
and Bond, [189]) we have presented the theory behind the emergence of the
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Fig. 1. The Cosmic Web. The image shows the weblike patterns traced by the
Dark Matter distribution, at the present epoch, in a Universe based on a ΛCDM
scenario. It concerns an N-body simulation in a box of 200 h−1 Mpc size. The three
boxes indicate examples of the main structure components of the Cosmic Web.
Amongst others, the image clarifies the mutual spatial relationship between these
elements. Low-density and low contrast walls are less prominent than the outstand-
ing filamentary channels which define the texture of the Cosmic Web. Near the
intersection points of filaments and sheets we find high-density cluster nodes. The
figures demonstrates the significance of the concept “Cosmic Web”. Image courtesy
of Miguel Aragón-Calvo, see Aragón-Calvo [5]

Cosmic Web from the pristine near-uniform Universe. The theoretical frame-
work of Cosmic Web has to be confronted with the information obtained from
a variety of sources. On the observational side the cosmic web has first been
seen in redshift maps of the spatial galaxy distribution. The recent success in
mapping the spatial weblike dark matter distribution by means of weak lens-
ing observations forms a breakthrough for our understanding of the large-scale
dynamics. Equally important sources of information concern the Lyα forest
and the WHIM, the imprint of the gaseous material that fell into the weblike
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structures defined by the dark matter distribution. Two aspects of the large
scale universe do play a special role in our study. Clusters of galaxies are the
prime objects in defining the pattern and structure of the Cosmic Web. On
the other hand we have the large voids as important structural and dynamical
components. They are of prime significance for the morphology of the large
scale Universe.

2 The Emergence of the Cosmic Web

Towards the end of the seventies a set of new observations did start to unveil
the existence of coherent structures larger than that of clusters of galaxies.
With the review of [124] the supercluster paradigm established itself as the
new view of the large scale distribution of matter and galaxies in the Universe.
It had gradually emerged as a result of various early galaxy redshift surveys
of nearby regions in the Universe (e.g. Chincarini and Rood [33], Gregory
and Thompson [73], Einssto, Joeveer and Saar [55]) and put on a firm fotting
with the completion of the first systematic and large redshift survye, the CfA1
survey [43]. Along with these efforts came the unexpected finding of the first
example of large cosmic voids, the Bootes void [96].

2.1 Galaxies and the Cosmic Web

It was the celebrated map of the first CfA redshift slice [45] that showed the
connection between the basic elements of the Cosmic Web that was going to
emerge in the more complete picture. While it provided an initial hint of the
existence of the Cosmic Web it was so thin that it was not immediately clear
what its true nature was, whether it were bubbles, pancakes, or something else.
In recent years this view has been expanded dramatically to the present grand
vistas offered by the 100,000s of galaxies in the 2dF – two-degree field – Galaxy
Redshift Survey, the 2dFGRS (e.g. Colless et al. [39]), and SDSS [180] galaxy
redshift surveys.1 These and many other redshift surveys have unequivocally
established that galaxies are located in dense, compact clusters, in less dense
filaments, and in sheetlike walls surrounding vast, almost empty regions called
voids, the structural components of the Cosmic Web.

The first impressions of a weblike galaxy distribution seen in the shallow
CfA2 redshift slices got firmly established as a universal cosmic phenomenon
through the publication of the results of the Las Campanas redshift survey
(LCRS [166]). Its chart of 26,000 galaxy locations in six thin strips on the
sky, extending out to a redshift of z ∼ 0.1, did provide the first impres-
sion of structure in a truely cosmologically representative volume of space.
The Las Campanas redshift survey confirmed the ubiquity and reality of we-
blike patterns over vast reaches of our Universe. Also important was that
it did not show any strong evidence of inhomogeneities surpassing sizes of
100 − 200 h−1Mpc.
1 See http://www.mso.anu.edu.au/2dFGRS/ and http://www.sdss.org/
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This is most dramatically illustrated by the map 2dFGRS and SDSS maps.
The published maps of the distribution of nearly 250,000 galaxies in two nar-
row “slice” regions on the sky yielded by the 2dFGRS surveys reveal a far from
homogeneous distribution. Instead, we recognize a sponge-like arrangement,
with galaxies aggregating in striking geometric patterns such as prominent fil-
aments, vaguely detectable walls and dense compact clusters on the periphery
of giant voids.2 The three-dimensional view emerging from the SDSS red-
shift survey provides an even more convincing image of the intricate patterns
defined by the cosmic web (Fig. 2). A careful assessment of the galaxy distri-
bution in our immediate vicintiy reveals us how we ourselves are embedded
and surrounded by beautifully delineated and surprisingly sharply defined we-
blike structures. In particular the all-sky nearby infrared 2MASS survey (see
Fig. 3) provides us with a meticulously clear view of the web surrounding us.

The cosmic web is outlined by galaxies populating huge filamentary and
wall-like structures, the sizes of the most conspicuous one frequently exceed-
ing 100 h−1 Mpc. The closest and best studied of these massive anisotropic
matter concentrations can be identified with known supercluster complexes,
enormous structures comprising one or more rich clusters of galaxies and a
plethora of more modestly sized clumps of galaxies. A prominent and represen-
tative nearby specimen is the Perseus-Pisces supercluster, a 5 h−1 wide ridge of
at least 50 h−1 Mpc length, possibly extending out to a total length of 140 h−1

Mpc. While such giant elongated structures are amongst the most conspicu-
ous features of the Megaparsec matter distribution, filamentary features are
encountered over a range of scales and seem to represent a ubiquitous and uni-
versal state of concentration of matter. In addition to the presence of such fila-
ments the galaxy distribution also contains vast planar assemblies. A striking
local example is the Great Wall, a huge planar concentration of galaxies with
dimensions that are estimated to be of the order of 60 h−1 × 170 h−1 × 5 h−1

Mpc [66]. In both the SDSS and 2dF surveys even more impressive planar
complexes were recognized, with dimensions substantially in excess of those
of the local Great Wall. At the moment, the socalled SDSS Great Wall appears
to be the largest known structure in the Universe (see Fig. 4).

2.2 Cosmic Nodes: Clusters

Within and around these anisotropic features we find a variety of density
condensations, ranging from modest groups of a few galaxies up to massive
compact galaxy clusters (see eg. Fig. 5 ). The latter stand out as the most mas-
sive, and most recently, fully collapsed and virialized objects in the Universe.
2 It is important to realize that the interpretation of the Megaparsec galaxy dis-

tribution is based upon the tacit yet common assumption that it forms a a fair
reflection of the underlying matter distribution. While there are various indica-
tions that this is indeed a reasonable approximation, as long as the intricate and
complex process of the formation of galaxies has not been properly understood
this should be considered as a plausible yet heuristic working hypothesis.
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Fig. 2. SDSS is the largest and most systematic sky survey in the history of as-
tronomy. It is a combination of a sky survey in 5 optical bands of 25% of the
celestial (northern) sphere. Each image is recorded on CCDs in these 5 bands. On
the basis of the images/colours and their brightness a million galaxies are subse-
quently selected for spectroscopic follow-up. The total sky area covered by SDSS is
8452 square degrees. Objects will be recorded to mlim = 23.1. In total the result-
ing atlas will contain 108 stars, 108 galaxies and 105 quasars. Spectra are taken
of around 106 galaxies, 105 quasars and 105 unusual stars (in our Galaxy). Of
the 5 public data releases 4 have been accomplished, ie. 6670 square degrees of
images is publicly available, along with 806,400 spectra. In total, the sky survey
is now completely done (107%), the spectroscopic survey for 68%. This image is
taken from a movie made by Subbarao, Surendran and Landsberg (see website:
http://astro.uchicago.edu/cosmus/projects/sloangalaxies/). It depicts the resulting
redshift distribution after the 3rd public data release. It concerns 5282 square de-
grees and contained 528,640 spectra, of which 374,767 galaxies

Approximately 4% of the mass in the Universe is assembled in rich clusters.
They may be regarded as a particular population of cosmic structure beacons
as they typically concentrate near the interstices of the cosmic web, nodes
forming a recognizable tracer of the cosmic matter distribution [23]. Clusters
not only function as wonderful tracers of structure over scales of dozens up to
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Fig. 3. Equatorial view of the 2MASS galaxy catalog (6h RA at centre). The grey-
scale represents the total integrated flux along the line of sight – the nearest (and
therefore brightest) galaxies produce a vivid contrast between the Local Supercluster
(centre-left) and the more distant cosmic web. The dark band of the Milky Way
clearly demonstrates where the galaxy catalog becomes incomplete due to source
confusion. Some well known large-scale structures are indicated: P-P=Perseus-Pisces
supercluster; H-R=Horologium-Reticulum supercluster; P-I=Pavo-Indus superclus-
ter; GA=‘Great Attractor’; GC=Galactic Centre; S-C=Shapley Concentration;
O-C=Ophiuchus Cluster; Virgo, Coma, and Hercules=Virgo, Coma and Hercules
superclusters. The Galactic ‘anti-centre’ is front and centre, with the Orion and
Taurus Giant Molecular Clouds forming the dark circular band near the centre.
Image courtesy of J.H. Jarrett. Reproduced with permission from the Publications
of the Astronomical Society of Australia 21(4): 396–403 (T.H. Jarrett). Copyright
Astronomical Society of Australia 2004. Published by CSIRO PUBLISHING, Mel-
bourne Australia

hundred of Megaparsec but also as useful probes for precision cosmology on
the basis of their unique physical properties.

The richest clusters contain many thousands of galaxies within a relatively
small volume of only a few Megaparsec size. For instance, in the nearby Virgo
and Coma clusters more than a thousand galaxies have been identified within
a radius of a mere 1.5 h−1 Mpc around their core (see Fig. 6). Clusters are
first and foremost dense concentrations of dark matter, representing overden-
sities Δ ∼ 1000. In a sense galaxies and stars only form a minor constituent
of clusters. The cluster galaxies are trapped and embedded in the deep grav-
itational wells of the dark matter. These are identified as a major source of
X-ray emission, emerging from the diffuse extremely hot gas trapped in them.
While it fell into the potential well, the gas got shock-heated to temperatures
in excess of T > 107 K, which results in intense X-ray emission due to the
bremsstrahlung radiated by the electrons in the highly ionized intracluster
gas. In a sense clusters may be seen as hot balls of X-ray radiating gas. The
amount of intracluster gas in the cluster is comparable to that locked into
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Fig. 4. The CfA Great Wall (bottom slice, Geller and Huchra [66]) compared with
the Sloan Great Wall (top slice). Both structures represent the largest coherent
structural in the galaxy redshift surveys in which they were detected, the CfA red-
shift survey and the SDSS redshift survey. The (CfA) Great Wall is a huge planar
concentration of galaxies with dimensions that are estimated to be of the order of
60 h−1 × 170 h−1 × 5 h−1 Mpc. Truely mindboggling is the Sloan Great Wall, a huge
conglomerate of clusters and galaxies. With a size in the order of 400 h−1 Mpc it is at
least three times larger than the CfA Great Wall. It remains to be seen whether it is
a genuine physical structure or mainly a stochastic arrangement and enhancement,
at a distance coinciding with the survey’s maximum in the radial selection function.
Image courtesy of M. Jurić, see also Gott et al. [70]. Reproduced by permission of
the AAS

stars, and stands for ΩICM ∼ 0.0018 [63]. The X-ray emission represents a
particularly useful signature, an objective and clean measure of the potential
well depth, directly related to the total mass of the cluster (see e.g. Reiprich
and Böhringer, [146]). Through their X-ray brightness they can be seen out
to large cosmic depths. The deep gravitational dark matter wells also strongly
affects the path of passing photons. While the resulting strong lensing arcs
form a spectacular manifestation, it has been the more moderate distortion
of background galaxy images in the weak lensing regime [88, 89] which has
opened up a new window onto the Universe. The latter has provided a direct
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Fig. 5. The cosmic web at high redshifts: a prominent weblike features at a redshift
z ∼ 3.1 found in a deep view obtained by the Subaru telescope. Large scale sky
distribution of 283 strong Lyα emitters (black filled circles), the Lyα absorbers (red
filled circles) and the extended Lyα emitters (blue open squares). The dashed lines
indicate the high-density region of the strong Lyα emitters. From Hayashino et al.
2004. Reproduced by permission of the AAS

Fig. 6. Comparison of optical and X-ray images of the Coma cluster, A1656. The
cluster is at a distance of ≈ 70 h−1 Mpc. Left: optical image of the galaxies in the
centre of the Coma cluster. The Coma cluster contains more than 1000 galaxies
within a central region of ≈ 1.5 h−1 Mpc, mostly elliptical and SO galaxies. Clearly
visible are the two dominant giant elliptical galaxies, NGC4878 and NGC4889. The
colour image was created from 3 separate exposures taken in blue, red and near-
infrared, with the KPNO 0.9 m telescope (courtesy of Omar López-Cruz). Right:
ROSAT X-ray image at 0.5–2.0 keV.of the central region of the Coma cluster (cour-
tesy: S.L. Snowden, NASA/GSFC). The image is ≈ 1◦ × 1◦, corresponding to a size
of 1.2 h−1 Mpc at the cluster’s redshift z = 0.0232
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probe of the dark matter content of clusters and the large scale universe (for
a review see e.g. Mellier [118], Refregier [144]) (also see Sect. 2.4).

Cluster Catalogs

The Abell catalogue of optically identified galaxy clusters [2, 3] has fulfilled
a central role for the study of clusters and their large scale matter distri-
bution on scales of several tens of Megaparsec (see Bahcall [9]). With the
arrival of large new galaxy redshift surveys deep and objectively identified
cluster samples have opened a plethora of elaborate, detailed and systematic
studies of the cluster population. Cluster samples extracted from the SDSS
survey [15, 119, 150] will continue to play a large role. New and objective
cluster detection techniques have improved the range and completeness of the
cluster samples while minimizing projection effects [67, 95, 119]. Projection
effects may evoke false detections and contaminate studies of the cluster large
scale distribution. Amongst the most promising methods for optical or NIR
cluster detection is that of red-sequence detection [67], in which clusters are
simultaneously detected as overdensities in projected angular position, colour
and magnitude. It uses the observational fact that the bulk of the early-type
galaxies in rich clusters lie along a linear and narrow colour-magnitude re-
lation [109, 196]. The Red-Sequence Cluster Survey (RCS) seeks to exploit
this observation to compose a large catalog of clusters. Extrapolating cluster
detection towards the NIR, Kochanek et al. [100] assembled a cluster catalog
from the 2MASS galaxy sample. Other cluster samples are selected through
their X-ray emission, believed to represent a more robust manner for select-
ing mass-limited samples. Particularly noteworthy is the ROSAT-ESO Flux
Limited X-ray catalog (REFLEX [21]), which contains all clusters brighter
than an X-ray flux of 3× 10−12 ergs−1 cm−2 over a large part of the southern
sky. In addition there is the RASS X-ray selected SDSS cluster sample [141],
combining both optical and X-ray selection criteria. Recently, within the con-
text of the Deep Lens Survey, Wittman et al. [195] presented the first cluster
sample on the basis of their weak gravitational lensing signature. Perhaps po-
tentially most promising is the use of the Sunyaev-Zel’dovich effect, the small
CMB spectral distortion caused by the scattering of the CMB photons off the
high-energy intracluster electrons [175, 176]. Carlstrom et al. [28] and Vale
and White [185] proposed the construction of cluster catalogs using the SZ ef-
fect. While the Planck satellite mission will certainly be a major step forward
in the detection of SZ clusters, optimism has been slightly tempered by the
recent result of Lieu et al. [104]. Within the WMAP observations centered on
31 clusters they found a CDM decrement which was at least a factor 4 smaller
than expected.

Cluster Clustering

Through their high visibility clusters can be traced out to vast distances in the
Universe. Following the basic assumption that they are a fair and direct, be it
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sparse, tracer of the underlying matter distribution clusters are ideally suited
for probing the spatial matter distribution over large regions of space. Maps
of their distribution contain information on spatial clustering on scales of up
to hundreds of Megaparsec. A large range of observational studies, mostly
based on optically or X-ray selected samples, display a substantial level of
clumping of clusters on scales where clustering in the galaxy distribution has
diminished below detectability levels. A wide range of observational studies
on the basis of such optically selected samples have shown that the clustering
of clusters is significantly more pronounced than that of galaxies. Their two-
point correlation function has a shape similar to that of galaxies, but with
a substantially higher amplitude and detectable out to distances of at least
∼ 50 h−1 Mpc.

A good impression of the spatial distribution of rich clusters may be
obtained from Fig. 7 (from Borgani and Guzzo, [23]). It shows the spatial
distribution of the clusters in the REFLEX galaxy cluster catalogue [21].
Maps such as these confirm that clusters are highly clustered [9, 23]. They
aggregate to form huge supercluster complexes, coinciding with the filaments,
walls and related features in the galaxy distribution. These superclusters are

Fig. 7. The spatial cluster distribution. The full volume of the X-ray REFLEX
cluster survey within a distance of 600 h−1Mpc. The REFLEX galaxy cluster cata-
logue [21], contains all clusters brighter than an X-ray flux of 3× 10−12 ergs−1cm−2

over a large part of the southern sky. The missing part of the hemisphere delin-
eates the region highly obscured by the Galaxy. Courtesy: Borgani and Guzzo [23].
Reproduced by permission of Nature
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moderate density enhancements on scale of tens of Megaparsec, typically in
the order of a few times the average density. Either they are still co-expanding
with the Hubble flow, be it at a slightly decelerated rate, or they just started
contracting. Within these structures clusters reside at the dense intersections
of filaments, along which mass drains into the massive clusters [190].

Cluster Dipole

Clusters may also provide a better and more extensive view of the contri-
butions to the local gravitational force field by comparing the inferred Lo-
cal Group motion to the CMB dipole. Scaramella et al. [159] and Plionis
and Valdarnini [137] sought to establish by means of the cluster distribu-
tion within a distance of r ≈ 300 h−1Mpc whether the origin of our cosmic
motion should be located within this volume, or whether there are indica-
tions for even larger cosmic structures. Interestingly, the results of Plionis
& Kolokotronis [138] and Kocevski and Ebeling [99] appears to suggest that
X-ray selected clusters in the nearby Universe indicate a significantly larger
dynamical influence of structures over scales of 150 h−1 Mpc than previ-
ously indicated by similar dipole studies on the basis of the IRAS Point
Source Catalog Redshift survey (PSCz, see e.g. Branchini et al. [26]) and
the dipole anisotropy of the 2MASS Redshift survey [59]. The latter find that
mass structures beyond a distance of 140 h−1 Mpc only induce a negligi-
ble acceleration on the Local Group. Using the combined X-ray REFLEX,
eBCS [54] and CIZA samples, [99] came to the conclusion that only 44%
of the local motion is due to infall into the Great Attractor region while
56% is induced by more distant mass concentrations between 130 h−1 Mpc
and 180 h−1 Mpc away. The Shapley supercluster, one of the largest con-
centrations of clusters out to z = 0.12, is responsible for at least 30% of the
acceleration induced by structures beyond 130 h−1 Mpc. Also the Horologium-
Reticulum supercluster is found to have a substantial impact. The schematic
dipole profile (Fig. 8) indeed provides an enticing insight into the implied
local cosmic dynamics. Also interesting is the presence of a significant under-
density in the cluster distribution on the nother hemisphere, at a distance
∼ 150 h−1 Mpc.

Cluster Bias

The results on the strong clustering of clusters motivated theoretical argu-
ments for the idea of them forming a biased tracer of the matter distribution.
The first simple linear biasing prescriptions were justified by the idea that clus-
ters form from high-density peaks in the primordial density field, filtered over
an appropriately large scale [10, 87]. Biasing prescriptions may incorporate or
quantify an array of complex and usually ununderstood “gastrophysical” pro-
cesses [49]. However, to understand the influence on clustering it may suffice
to derive a heuristic bias factor of function. The value of a simple (linear) bias
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Fig. 8. Schematic X-ray cluster dipole profile. Clusters associations are grouped
by symbol shading to highlight their impact on the overall dipole amplitude. Abell
and CIZA clusters begin with letters “A” and “C”. Acronyms are: GA/Great At-
tractor, Hor-Ret/Horologium-Reticulum, Per-Peg/Perseus-Pegasus. Image courtesy:
Kocevski and Ebeling [99]. Reproduced by permission of AAS

factor would be a function of cluster mass, structure formation scenario and
cosmic epoch. Following up on the original peak bias idea [10, 87], an array
of more sophisticated theoretical bias model have been proposed. Seeking to
describe and analyze the bias of different species of galaxies as well as of clus-
ters, these modifications elaborated upon this idea and increased the realism
of the approximation [13, 48, 115, 120, 179].

2.3 Cosmic Depressions: the Voids

Complementing this cosmic inventory leads to the existence of large voids,
enormous regions with sizes in the range of 20–50 h−1 Mpc that are practically
devoid of any galaxy, usually roundish in shape and occupying the major share
of space in the Universe. Forming an essential ingredient of the Cosmic Web,
they are surrounded by elongated filaments, sheetlike walls and dense compact
clusters.

Voids have been known as a feature of galaxy surveys since the first surveys
were compiled [33, 55, 73]. Following the discovery by Kirshner et al. [96, 97]
of the most dramatic specimen, the Boötes void, a hint of their central posi-
tion within a weblike arrangement came with the first CfA redshift slice [45].
This view has been dramatically endorsed and expanded by the redshift maps
of the 2dFGRS and SDSS surveys [1, 39]. They have established voids as an
integral component of the Cosmic Web. The 2dFGRS maps and SDSS maps
(see e.g. Figs. 2 and 10), and the void map of the 6dF survey in Fig. 9, are
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Fig. 9. A region of the 6dF redshift survey marked by the presence of various major
voids. The image concerns a 3D rendering of the galaxy distribution in a 1000 km/s
thick slice along the supergalactic SGX direction, at SGX = −2500 km/s. Image
courtesy of A. Fairall

telling illustrations of the ubiquity and prominence of voids in the cosmic
galaxy distribution.

For the most systematic and complete impression of the cosmic void pop-
ulation the Local Universe provides the most accessible region. Recently, the
deep view of the 2dFGRS and SDSS probes (see e.g. Fig. 12) has been sup-
plemented with high-resolution studies of voids in the nearby Universe. Based
upon the 6dF survey [77], Fairall (private communication) identified nearly
all voids within the surveyed region out to 35,000 km s−1. It is the 2MASS
redshift survey [83] – the densest all-sky redshift survey available – which has
provided a uniquely detailed census of large scale structures in our Local Uni-
verse [59]. Partially including 6dF redshifts, the 2MASS redshift survey entails
a complete and systematic survey of structure in the nearby Universe up to
14,000–16,000 km s−1. This includes a complete sample of voids, directly iden-
tifiable from the density and velocity field reconstruction by Erdoğdu et al. [59]
does contain a nice complete sample of voids in our Local Universe, although
though some measure of bias and upper-limit to the size of identifiable voids is
introduced via the substantial level of spatial smoothing going along with the
Wiener filter processing. A nice impression of the typical structure, geometry
and size of voids is given by shell section through the local Cosmic Web seen
in the Aitoff sky projection in Fig. 11.
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Fig. 10. Gravitational impact of the Sculptor Void. The righthand frame shows the
inferred velocity field in and around the Sculptor void near the Local Supercluster.
The colour map represents the density values, with dark blue at δ ∼ −0.75 and
cyan near δ ∼ 0.0. The vectors show the implied velocity flow around the void, with
a distinct nearly spherically symmetric outflow. It is a zoom-in onto the indicated
region in the density and velocity map in the Local Universe (lefthand) determined
on the basis of the PSCz galaxy redshift survey. The peculiar velocities of the galaxies
in the PSCz galaxy redshift catalogue were determined by means of a linearization
procedure [25], the resulting galaxy positions and velocities have been translated by
DTFE into the depicted density and velocity flow maps. The Local Group is at the
centre of the map of our Local Universe (lefthand). To the left we see the Great
Attractor region extending out towards the Shapley supercluster. To the righthand
side we can find the Pisces-Perseus supercluster. The density values range from ∼ 4.9
(red) down to ∼ −0.75 (darkblue), with cyan coloured regions having a density
near the global cosmic average (δ ∼ 0). The velocity vectors are scaled such that
a vector with a length of ≈ 1/33rd of the region’s diameter corresponds to 650
km/s. The density and velocity field have an effective Gaussian smoothing radius of
RG ∼ √

5 h−1 Mpc. The top righthand insert zooms in on the Local Supercluster
and Great Attractor complex. From: Romano-Dı́az and van de Weygaert [149]
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Fig. 11. (continued)
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Void Sizes

Voids in the galaxy distribution account for about 95% of the total volume (see
Kauffmann and Fairall [93], El-Ad, Piran and da Casta [56], El-Ad and Piran
[57], Hoyle and Vogeley [81], Plionis and Basilakos [139], Rojas et al. [148],
Platen, van de Weygaert and Jones [137]).

The typical sizes of voids in the galaxy distribution depend on the galaxy
population used to define the voids. Voids defined by galaxies brighter than a
typical L∗ galaxy tend to have diameters of order 10–20 h−1Mpc, but voids
associated with rare luminous galaxies can be considerably larger; diameters
in the range of 20–50 h−1 Mpc are not uncommon (e.g Hoyle and Vogeley [81],
Plionis and Basilakos [139]). These large sizes mean that only now we are be-
ginning to probe a sufficiently large cosmological volume to allow meaningful
statistics with voids to be done. Firm upper limits on the maximum void size
have not yet been set. Recently there have been claims of the existence of
a supersized void, in the counts of the NVVS catalogue of radio sourcs, and
of its possible imprint on the CMB via the ISW effect in the form of a ‘cold
spot’. If this will be confirmed it will pose an interesting challenge to any
cosmological scenario (see Rudnick et al. [151]).

At the low end side of the void size distribution a very detailed survey of
the Local Volume, the very nearby Universe in and immediately around our
Local Supercluster, does provide some tentative information. At this close
range a few studies claim to have found what may be the smallest genuine
voids in existence. In his Catalog and Atlas of Nearby Galaxies Tully [183]
noted the presence of the Local Void in the Local Supercluster. The Local
Void begins directly from the boundaries of the Local Group and extends
in the direction of the north pole of the LSC by ∼ 14 h−1 Mpc. Simi-
lar and even smaller minivoids have recently been found by the analysis of
Tikhonov and Karachentsev [181] of the galaxy distribution in the Catalog of

�
Fig. 11. (continued) 2MASS view of the Local Void outflow. The reconstructed
density (top frame) and velocity field (bottom frame) of the 2MASS redshift
survey, evaluated on a thin shell of 2000 km s−1, shown in Aitoff projection. From
Erdoğdu et al. [59]. Top: the reconstructed density field in the thin shell, providing
a telling section through the Local Cosmic Web. Dashed lines show δ < 0, solid
lines δ ≥ 0, with contour spacing of Δδ = 0.1. Easily identifiable overdensities
are Ura Major, the Virgo cluster, the Centaurus cluster, Hydra cluster and the
Fornax-Doradus-Eridanus (F-D-E) supercluster complex. Most interestingly are the
locations of local voids: Gemini (Gem), Taurus (Tau), Andromeda (And), Delphinus
(Del), Virgo (Vir), Eridanus (Erid), Orion (Ori), and the Local Void (LV). Bottom:
Dashed lines show infall velocities, solid lines outflow. First solid line is for vrad =
0 km s−1, and contour spacing is |Δvrad| = 50 km s−1. Clearly visible is the strong
outflow from the Local Void, reflected in the strong central patch. From: Erdoğdu
et al. [59]
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Fig. 12. Void region in de 2dFGRS survey. From: Schaap [160]

Neighbouring Galaxies [92]. Because the latter entails a meticulously detailed
view of the true spatial distribution of galaxies out to 5 h−1 Mpc, it allowed
the identification and mapping of minivoids in the Local Volume. Tikhonov
and Karachentsev [181] and Tikhonov and Klypin [182] claim to have found
a total of some 30 minivoids, completely free of galaxies, with sizes of
0.7–3.5 h−1 Mpc.

The Meaning of Voids

There are a variety of reasons why the study of voids is interesting for our
understanding of the cosmos.

• Firstly, because they are a prominent aspect of the Megaparsec Universe
it is necessary to understand the structure of evolution of voids in order
to get a proper and full understanding of the formation and dynamics of
the Cosmic Web.

• Secondly, voids may contain a considerable amount of information on the
underlying cosmological scenario and on global cosmological parameters.

• Thirdly, their pristine low-density environment implies them to be inter-
esting regions for studying the influence of cosmic environment on the
formation of galaxies.

We will address the last two aspects in more detail below, along with a dis-
cussion of the available observational information on the dynamics of voids. A
more focussed discussion of void evolution and dynamics within the context
of the Cosmic Web is the subject of Sect. 4.

Void Dynamics

The essential role of voids in the organization of the cosmic matter distribu-
tion was recognized soon after their discovery [84]. This also includes their
dynamical influence. As a result of their underdensity voids represent a re-
gion of weaker gravity, resulting in an effective repulsive peculiar gravitational
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influence. Various studies have indeed found strong indicatations for their im-
print in the peculiar velocity flows of galaxies in the Local Universe.

Bothun et al. [24] made the first claim of seeing pushing influence of voids
when assessing the stronger velocity flows of galaxies along a filament in the
first CfA slice. Stronger evidence came from the extensive and systematic
POTENT analysis of Mark III peculiar galaxy velocities [194] in the Local
Universe [19, 46]. POTENT found that for a fully selfconsistent reconstruc-
tion of the dynamics in the Local Universe, it was inescapable to include
the dynamical influence of voids (see e.g. Dekel [47]). The DTFE maps by
Romano-Dı́az and van de Weygaert [149] of the density and velocity field in
the Local Universe obtained from the PSCz redshift sample [25] do provide a
very clear visual image of the influence of such voids in the Local Universe,
with the pushing influence of the Sculptor void at the Local Supercluster as
most outstanding example (see Fig. 10).

With the arrival of new and considerably improved data samples the dy-
namical influence of voids in the Local Universe has been investigated and
understood in greater detail. The reconstruction of the density and velocity
field in our local cosmos on the basis of the 2MASS redshift survey has indeed
resulted in a very interesting and complete view of the dynamics on Mega-
parsec scales. As one may infer from Fig. 11 the repulsive influence of the
Local Void is impressively strong and outstanding. This conclusion goes along
with the conclusions reached on the basis of an extensive and careful analysis
of the peculiar velocity of the Local Group by Tully et al. [184]. They are lead
to the conclusion that the Local Void is responsible for a considerable repul-
sive influence, accounting for ∼ 259 km s−1 of the ∼ 631 km s−1 Local Group
motion with respect to the CMB. While partly dependent on the details of
the analysis, it seems hard to avoid the conclusion that we do not feel the
presence of voids in our universe.

Voids and the Cosmos

Voids may function as probes of global cosmological parameters and on the
underlying cosmology. Their intrinsic structure and shape, the outflow veloc-
ities and the corresponding redshift distortions are related to various aspects
of the underlying cosmology. The outflow from the voids depends on the mat-
ter density parameter Ωm, the Hubble parameter H(t) and possibly on the
cosmological constant Λ (see e.g. Van de Weygaert and van Kampen [187],
Martal and Wassermann [111], Dekel and Rees [50], Bernardeau et al. [17],
Fliche and Triay [61]). These parameters also dictate their redshift space
distortions [154, 163].

Another interesting link between void structure and cosmology has re-
cently been emphasized by Park and Lee [127] and Lee and Park [103]. They
found that the intrinsic structure and shape of voids are sensitive to various
aspects of the power spectrum of density fluctuations, including the imprint
of dark energy.
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The cosmological ramifications of the reality of a supersized void akin to
the identified by Rudnick et al. [151] in the NVVS radio source counts would
obviously be far-reaching.

Void Galaxies

A major point of interest concerns the galaxies within the voids, the void
galaxies. Voids provide a unique and still largely pristine environment for
studying the evolution of galaxies [80, 105, 131] and may represent a major
challenge for current scenarios of structure formation. Peebles [131] pointed
out that the observed salient and total absence of dwarf galaxies in nearby
voids – for example the absence of dwarfs in the Local Void noticed by
Karachentseva et al. [91] - could possibly involve strong ramifications for the
viability of the ΛCDM cosmology on small scales.

A clear picture of the relation between void galaxies and their surroundings
is just becoming available, be it there is still a lot of uncertainty concerning the
physics which drives the observed correlations. The simplest models of biased
galaxy formation (e.g Little and Weinberg [105]) predict that voids would be
filled with galaxies of low luminosity, or galaxies of some other uncommon
nature [80]. More sophisticated models have recently been developed [14, 64,
78, 116]; in these models the properties of galaxies are determined by the
halos they inhabit. The recent interest in environmental influences on galaxy
formation has prodded substantial activity in this direction [29, 74, 75, 81,
91, 101, 128, 140, 148, 178, 181].

2.4 Cosmic Shear and the Cosmic Web

The cosmic web is first and foremost defined and outlined by the dark matter
distribution, the gravitationally dominant component which sets the corre-
sponding gravitational potential. Galaxies are assumed to trace the under-
lying dark matter distribution. Even though the galaxies do indeed seem to
provide a reasonable impression of the matter distribution, a direct map of
the dark matter itself would obviously allow a real and unbiased view of the
dynamics of the cosmic web.

A recent study has indeed managed to reveal the spatial dark matter
distribution through its effect on the paths of the photons as they move
through the Universe, meanwhile confirming that galaxies and starlight are
in fact good tracers. Massey et al. [114] succeeded in producing the first tru-
ely three-dimensional map of the dark matter distribution. Their study is
based on (weak) gravitational lensing data from the Cosmic Evolution Survey
(COSMOS), and concerns a total region of 1637 square degrees meticulously
observed by the ACS camera onboard the HST. An accurate and detailed
two-dimensional map of the projected mass distribution clearly reveals the fila-
mentary features connecting the high-density clusters (Fig. 13). Until recently,
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Fig. 13. The total projected matter density inferred from the large weak lensing
study of the COSMOS data, shown in contours. The projected mass is dominated by
dark matter. For comparison the matter surface density contours are superimposed
on tracers of the baryonic matter distribution: (1) blue, the stellar mass (within
Δz ≈ 0.1) (2) yellow: the galaxy number density (within Δz ≈ 0.1) and (3) red:
hot dense gas, seen by deep X-ray observations with the XMM satellite. The X-ray
emission by point sources has been removed. The dark matter reveals filamentary
overdense regions that are topologically connected but insufficiently dense to gener-
ate X-ray emission: a loose network of filaments tracing the Cosmic Web. Within the
filamentary network we recognize the dense compact cluster nodes. The most promi-
nent peak in all four tracers is a single cluster of galaxies at z = 0.73 (α, δ=149 h,55
min, 2◦31’). Courtesy of Richard Massey, also see Massey et al. [114]. Reproduced
by permission of Nature

such weak lensing mass reconstructions were confined to the high-density re-
gions in and around clusters because of the outstanding strength of their
lensing signal. With the COSMOS map probing the more moderately dense
regions of the cosmic web it turns out that stellar mass and galaxy number
density do indeed accurately follow the dark matter distribution while the
correlation with the X-ray emission – confined to the inner regions of clusters
– is significantly less pronounced.
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By complementing the lensing data with redshifts of the galaxy sources a
tomographic analysis of the data, involving the assessment of the differential
growth of the lensing signal between many thin slices separated by Δz = 0.05,
made it possible to reconstruct the full three-dimensional matter distribution
(Fig. 14). It did reveal that the massive cluster at z = 0.73 (α, δ = 149 h,
55 min, 2◦31’) is embedded within a giant three-dimensional structure which
includes at least one filament.

The 3-D dark matter map is truely historical in that it uncovered for the
first time the reality of a weblike pattern in the dark matter underlying the
one that we see in the galaxy distribution. The potential for this new light

Fig. 14. Three-dimensional reconstruction of the dark matter distribution. The
three axes correspond to right ascension, declination and redshift: with distance in-
creasing towards the bottom. The redshift scale is highly compressed and the survey
volume is really an elongated cone. The isodensity contour corresponds to a level of
1.4 × 1013M� within a circle of radius 700 kpc and Δz = 0.05, arbitrarily chosen
to highlight the filamentary structure. The 3-D map has been inferred from the to-
mographic analysis of the COSMOS weak lensing data, involving the assessment of
the differential growth of the lensing signal between many thin slices separated by
Δz = 0.05. The 3-D map reveals that the massive z = 0.73 cluster is indeed part
of much larger 3-D structure, including a filament partially aligned along the line
of sight. Courtesy of Richard Massey, also see Massey et al. [114]. Reproduced by
permission of Nature
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on the dark side of the Universe is tremendous. The detected filamentary DM
network provides a direct and transparent link to theories of structure forma-
tion, directly tying in with collisionless dark matter and gravity without the
necessity to involve complex and as yet not fully understood hydrodynamic,
radiative and starformation processes.

2.5 The Gaseous Cosmic Web

Galaxies are assumed to trace the underlying dark matter distribution, and
their spatial distribution (still) represents the most detailed and clearest out-
line of its intricate weblike features which we have available. Nonetheless, stars
and galaxies do in fact represent only a minor fraction of all the baryons in
the Universe. As far as baryons are concerned the cosmic web is first and
foremost an intricate network of diffuse gaseous lanes pervading the Universe
(see Fig. 16).

In other words, while in practice galaxies are used as tracers, it is the dif-
fuse intergalactic medium (IGM) which forms the main baryonic constituent
of the cosmic web. At high redshift (z � 2) the overwhelming majority of
baryons are in a diffuse, photoionized intergalactic medium, partly enriched
by the products of stellar nucleosynthesis. This gas is observable as HI absorp-
tion lines in the spectra of distant background quasars (see Rauch [143], Cen
et al. [30]). The resulting redshifted Lyman α (Lyα) absorption along their
line of sight produces the Lyα forest, which represents a highly sensitive one-
dimensional probe of the (gaseous) cosmic web (see Fig. 15). By the current
epoch, hierarchical structure formation has produced deep potential wells into
which the baryons accrete, thereby moving a significant portion of the baryons
from the IGM into stars, galaxies, groups and clusters. Hydrodynamical simu-
lations of cosmic structure formation have indicated that a significant fraction
of the baryons at z ∼ 0 are found in a gaseous form. The gas around emerging
clusters falls into their potential wells and turns into hot highly ionized X-ray
emitting intracluster gas. Most of the gas, with a temperature between 105

and 107 K, is found in regions of moderate overdensities δ ∼ 10–100. Part of
this gas is associated with the virial regions around galaxies, accounting for
around Ωb ∼ 0.024 of the total Ωb = 0.045 contributed by baryons to the den-
sity of the Universe [63]. The remaining component of this diffuse Warm-Hot
Intergalactic Medium (WHIM) mostly traces out the filamentary features in
the cosmic web. It may account for a significant fraction of the missing baryons
at low redshifts (Fukugita et al. [62] Fukugita & Peebles [63]). Probably there
is also a significant amount of low temperature WHIM with T < 105 K, dis-
tributed mostly as sheet-like structures (Kang et al. [90]). The WHIM may
even account for up to 30%–40% of the baryonic mass in the Universe (Davé
et al. [42]). Its evolution is driven primarily by shock heating as the gas falls
into the gravitationally generated potential wells, mainly those defined by the
nonequilibrium large-scale structures such as filaments. For the heating of the
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Fig. 15. The spectrum of the quasar Q0453-243 obtained with the HIRES spectro-
graph on the Keck I telescope. The quasar has an emission redshift of z = 2.661.
To the left of the Lymanα emission line you see the “forest” of HI absorption lines
produced by intervening, tenuous intergalactic clouds. The lower panel zooms in on
the region between 4000 and 4100 A. The particularly strong line at 4020 A is a
“damped Lymanα absorption feature produced in a cloud which is optically thick
in HI. Image courtesy of Matteo Viel

gas, processes like supernova feedback, radiative cooling and photoionization
are only of secondary importance.

The shock-heated WHIM gas in filaments and sheets is manifested best
through emissions and absorptions in soft X-ray and far UV. It will make
significant contributions to the soft X-ray background, and can be detected
through absorptions of highly ionized species suchs as OVII and OVIII in AGN
spectra and line emissions from OVII and OVIII ions. Detection of WHIM
absorption in X-ray observations were reported by various groups (Kaastra
et al. [86], Nicastro et al. [121]), while there was also a report of a possible
detection of WHIM emission from a filament around Coma (Finoguenov [60]).

The study of the IGM represents an impressively rich source for our un-
derstanding of the cosmic web. Potentially the intricate structure can be
traced in much more detail than by means of the discrete galaxy distribu-
tion. Different chemical species and ionization stages probe different density
and temperature regimes within the cosmic web, which in turn may be related
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Fig. 16. Spatial distribution of the warm/hot intergalactic gas (WHIM) with tem-
perature in the range 105−107 K, at Z = 0, in a box of 85 h−1Mpc. The image
reveals the striking pattern of the Cosmic Web into which the WHIM gas has settled
itself as it flowed into the potential wells set by the dark matter distribution. The
green regions have densities about 10–20 times the mean baryon density of the uni-
verse at Z = 0; the yellow regions have densities about 100 times the mean baryon
density, while the small isolated regions with red and saturated dark colours have
even higher densities reaching about 1000 times the mean baryon density and are
sites for current galaxy formation. Image courtesy of Renyue Cen, also see Cen and
Ostriker [31]. Reproduced by permission of the AAS

to different regimes and stages of galaxy formation. However, in particular the
most directly accessible study of the IGM, that of absorption line studies, is
confined to one-dimensional probes. This renders it difficult to translate these
to a three-dimensional image (yet, a constrained inversion is not entirely un-
feasible, see Pichon et al. [132]). Emission line studies of the WHIM would
offer the exciting potential of mapping the cosmic web through its gaseous
contents. A meticulous detailed mapping comparable to that traced by the
galaxy distribution remains as yet only a remote possibility.

3 Spatial Structure, Pattern Analysis
and Object Identification

Many attempts to describe, let alone identify, the features and components
of the Cosmic Web have been of a mainly heuristic nature. There are var-
ious relevant issues. The primary issue is that of defining a technique that
sensitively probes the properties of the Cosmic Web. Another major point
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of concern involves the sampling of the web patterns, by default limited in
scope. Cosmological theories generally describe the development of structure
in terms of continuous (dark matter) density and velocity fields. To a large
extent our knowledge stems from a discrete sampling of these fields.

In the real world it is impossible to get exhaustive values of data at every
desired point of space. The product of astronomical observations, physical
experiments and computer simulations often concern data sets in two, three
or more dimensions. This may involve the value of some physical quantity:
the galaxy density field, the dark matter density field or the peculiar velocity
field are amongst the best known examples. Often these are measured or
determined from an irregularly distributed set of reference points.

The principal task for any formalism that seeks to process the sampled
data on the cosmological matter distribution is to optimally retain or extract
the required information on the Cosmic Web. Dependent on the purpose of a
study, various different strategies may be followed:

• Statistical Analysis
One strategy is to distill various statistical measures, or other sufficiently
descriptive cosmological measures, which characterize specific aspects of
the large scale matter distribution. In essence this involves the compression
of the available information into a restricted set of parameters or functions,
with the intention to compare or relate these to theoretical predictions.

• Feature Identification
The identification and isolation of features and objects in the cosmic mat-
ter distribution – clusters, filaments and voids – is essential for understand-
ing the nature of structures which form in the Universe and provides an
important link between observation and theoretical models. On the one
hand this may involve a cosmographic study of individual structures in
our Cosmic neighbourhood. Their detail usually forms a welcome com-
plement to surveys of large samples of similar objects, while sometimes
they highlight the extremes in the cosmological zoo. Perhaps most impor-
tant is the necessity of well-defined feature identifiers for proper statistical
studies of cosmic structure formation.

• Structure Reconstruction
For the determination of various statistical characterizations of cosmic
structure it is imperative to define an optimal reconstruction of cosmic
density and velocity fields. Demanding in itself, such a reconstruction is
often complicated by the usually discrete nature of the sample point dis-
tribution and the highly inhomogeneous nature of the sample point dis-
tribution. The translation into a continuous field which optimally reflects
reality is a far from trivial procedure and forms the subject of an extensive
literature in computer science, visualization and applied sciences.
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3.1 Statistics of the Cosmic Web

There is a variety of statistical measures characterizing specific aspects of
the large scale matter distribution (for an extensive and complete review see
Mart́ınez & Saar, [112]). Below we list a selection of methods for structure
characterisation and finding. It is perhaps interesting to note two things about
this list:

(a) each of the methods tends to be specific to one particular structural entity
(b) there are no explicit wall-finders.

Both issues emphasize an important property that generic techniques for
tracing structural features should possess (see 3.2). The skeleton formal-
ism [122, 171, 172] accomplished this by tracing the mathematically well-
defined skeleton of the Cosmic Web and arguing its close relationship to its
filamentary constituents. More generic is the Scale Space approach adopted
by Aragón-Calvo [5] (also see Aragón-Calvo et al. [6]): it provides a uniform
approach to finding Blobs, Filaments and Walls as individual objects that can
be catalogued and studied.

Structure from Higher Moments

The clustering of galaxies and matter is most commonly described in terms
of a hierarchy of correlation functions. The two-point correlation function
(and its Fourier transform, the power spectrum) remains the mainstay of
cosmological clustering analysis and has a solid physical basis. However, the
nontrivial and nonlinear patterns of the cosmic web are mostly a result of the
phase correlations in the cosmic matter distribution [32, 38, 153]. While this
information is contained in the moments of cell counts [44, 65, 130] and, more
formally so, in the full hierarchy of M-point correlation functions ξM , their
measurement has proven to be impractical for all but the lowest orders [85,
130, 177].

The Void probability Function [102, 193] provided a characterisation the
“voidness” of the Universe in terms of a function that combined information
from many higher moments of the point distribution. But, again, this has not
provided any identification of individual voids.

Topological Methods

The shape of the local matter distribution may be traced on the basis of
an analysis of the statistical properties of its inertial moments [8, 12, 110].
These concepts are closely related to the full characterization of the topology
of the matter distribution in terms of four Minkowski functionals [117, 162].
They are solidly based on the theory of spatial statistics and also have the
great advantage of being known analytically in the case of Gaussian random
fields. In particular, the genus of the density field has received substantial
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attention as a strongly discriminating factor between intrinsically different
spatial patterns [69, 82].

The Minkowski functionals provide global characterisations of structure.
An attempt to extend its scope towards providing locally defined topological
measures of the density field has been developed in the SURFGEN project
defined by Sahni and Shandarin and their coworkers [158, 164]. The main
problem remains the user-defined, and thus potentially biased, nature of the
continuous density field inferred from the sample of discrete objects. The usual
filtering techniques suppress substructure on a scale smaller than the filter
radius, introduce artificial topological features in sparsely sampled regions
and diminish the flattened or elongated morphology of the spatial patterns.
Quite possibly the introduction of more advanced geometry based methods
to trace the density field may prove a major advance towards solving this
problem.

Importantly, Mart́ınez et al. [113] and Saar et al. [155] have generalized
the use of Minkowski Functionals by calculating their values in a hierarchy
of scales generated from wavelet-smoothed volume limited subsamples of the
2dF catalogue. This approach is particularly effective in dealing with non-
Gaussian point distributions since the smoothing is not predicated on the use
of Gaussian smoothing kernels.

3.2 Structure Finding

In addition to the statistical characterization of the cosmic matter density
field, a major effort goes into identifying and isolating features and individual
structures in the cosmic matter distribution. The vast majority of these studies
have focussed on the detection of clusters of galaxies. Tracing filamentary
has gained relatively little attention, and with the exception of a few rare
outstanding concentrations – the Great Wall [66] and the SDSS Great Wall
[70] – the detection of sheets is a virtually nonexistent activity.

Cluster Finding

In the context of analyzing distributions of galaxies we can think of cluster
finding algorithms. There we might define a cluster as an aggregate of neigh-
bouring galaxies sharing some localised part of velocity space. Algorithms like
HOP attempt to do this. However, there are always issues arising such as how
to deal with substructure: that perhaps comes down to the definition of what
a cluster is. Here we focus on defining coherent structures based on particle
positions alone. The velocity space data is not used since there is no prior
prejudice as to what the velocity space should look like.

Filament Finding

The connectedness of elongated supercluster structures in the cosmic matter
distribution was first probed by means of percolation analysis, introduced
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and emphasized by Zel’dovich and coworkers [197], while a related graph-
theoretical construct, the minimum spanning tree of the galaxy distribution,
was extensively probed and analysed by Bhavsar and collaborators [11, 34, 72]
in an attempt to develop an objective measure of filamentarity.

Finding filaments joining neighbouring clusters has been tackled, using
quite different techniques, by Colberg, Krughoff and Connolly [35] and by
Pimbblet [133]. More general filament finders have been put forward by a
number of authors. Stoica et al. [173] use a generalization of the classical
Candy model to locate and catalogue filaments in galaxy surveys. This ap-
proach has the advantage that it works directly with the original point process
and does not require the creation of a continuous density field. However, it is
very computationally intensive.

The mathematically most rigorous program for filament description and
analysis is that of the skeleton analysis of density fields by Novikov, Colombi
and Doré [122] (2-D) and Sousbie et al. [17] (3-D). Based on Morse theory
(see Colombi, Pogosyan and Souradeep [40]) the skeleton formalism analyzes
continuous density fields and detects morphological features – maxima and
saddle points in the density field – by relating density field gradients to the
Hessian of the density field (also see Doré et al. [52]). It results in an ele-
gant and effective tool with a particular focus towards tracing the filamentary
structures in the cosmic web. However, it is computationally intensive and
may be sensitive to the specific method of reconstruction of the continuous
density field. The Hessian of the density field also forms the basis of the MMF
analysis developed by Aragon-Calvo [5] (see Fig. 17) although MMF embeds
this within a formalism that explicitly adresses the multiscale character of the
cosmic density field and includes the shape conserving abilities of the tessel-
lation based density field reconstruction Schaap and van de Weygaert [161].

Void Finding

Voids are distinctive and striking features of the cosmic web, yet identifying
and tracing their outline within the complex spatial geometry of the Cosmic
Web has proven to be far from trivial. There have been extensive searches for
voids in galaxy catalogues [81, 139] and in numerical simulations [4, 7].

Several factors contribute to making systematic void-finding difficult. One
major obstacle is that there is not an unequivocal definition of what a void is
and as a result there is considerable disagreement on the precise outline of such
a region (see e.g. Shandarin et al. [165]). The fact that voids are almost empty
of galaxies means that the sampling density plays a key role in determining
what is or is not a void [163]. Moreover, void finders are often predicated on
building void structures out of cubic cells [93] or out of spheres (e.g: Patiri
et al. [129]). Because of the vague and diverse definitions, and the diverse
interests in voids, there is a plethora of void identification procedures [4, 7,
36, 56, 76, 81, 93, 129, 139, 165]. For example, there are methods that attempt
to synthesize voids from the intersection of cubic or spherical elements and
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Fig. 17. The filamentary network in a GIF ΛCDM simulation. The filaments were
identified by means of the MMF technique of Aragón-Calvo et al. [6]. The filled (grey)
circles correspond to clusters with a mass above 1014 M�. The inserts contain three
specific examples of filaments. The gray dots represent the original (simulation)
dark matter particles. The spine of the filaments (black particles) is the result of
the filament compression algorithm of Aragón-Calvo [5]. Image courtesy M. Aragón-
Calvo, also see Aragón-Calvo [5]

do so with varying degrees of success. The Aspen-Amsterdam Void Finder
Comparison Project of Colberg et al. [37] will clarify many of these issues.
The Watershed-based algorithm of Platen, van de Weygaert and Jones [135]
aims to avoid issues of both sampling density and shape.

3.3 Reconstruction of the Cosmic Web

For a meaningful analysis and interpretation of spatial data it is often nec-
essary to obtain estimates of the related field values throughout the sample
volume. The reconstructed continuous field may subsequently be processed
in order to yield a variety of interesting parameters. Ideally, reconstruction
procedures should be based upon solid statistical foundations. The complex
reality of the cosmic web – marked by asymmetric and anisotropic features
and a large range of densities– renders it very difficult to develop and infer
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statistical methods from first principle. The work by Erdoğdu et al. [58] and
Kitaura and Enßlin [98] represent examples of possibly rewarding strategies.

In the observational reality galaxies are the main tracers of the cosmic
web and it is mainly through the measurement of the redshift distribution of
galaxies that we have been able to map its structure. Another example is that
of the related study of cosmic flows in the nearby Universe, based upon the
measured peculiar velocities of a sample of galaxies located within this cosmic
volume. Likewise, simulations of the evolving cosmic matter distribution are
almost exclusively based upon N-body particle computer calculation, involv-
ing a discrete representation of the features we seek to study. Both the galaxy
distribution as well as the particles in an N-body simulation are examples of
spatial point processes in that they are

- discretely sampled
- have an irregular spatial distribution.

A major part of any reconstruction procedure is the filtering and interpolation
of the measured data.

3.4 Spatial Data: Filtering and Interpolation

Issues of smoothing and spatial interpolation of the measured data over the
sample volume are of considerable importance and interest in many different
branches of science. Interpolation is fundamental to graphing, analysing and
understanding of spatial data. Key references on the involved problems and
solutions include those by Ripley [147], Sibson [170], Watson [192], Cressie [41].
While of considerable importance for astronomical purposes, many available
methods escaped attention. A systematic treatment and discussion within the
astronomical context is the study by Rybicki and Press [152], who focussed
on linear systems as they developed various statistical procedures related to
linear prediction and optimal filtering, commonly known as Wiener filtering.
An extensive, systematic and more general survey of available mathematical
methods can be found in a set of publications by Lombardi and Schneider
[106–108].

DTFE: Delaunay Tessellation Field Estimator

A particular class of spatial point distributions is the one in which the point
process forms a representative reflection of an underlying smooth and con-
tinuous density/intensity field. The spatial distribution of the points itself
may then be used to infer the density field. This forms the basis for the in-
terpretation and analysis of the large scale distribution of galaxies in galaxy
redshift surveys. The number density of galaxies in redshift survey maps and
N-body particles in computer simulations is supposed to be proportional to
the underlying matter density.



Observations and Morphology of the Cosmic Web 439

One noteworthy example of a technique which uses this fact is the DTFE
method, a linear version of natural neighbour interpolation. The DTFE tech-
nique [161, 188] recovers fully volume-covering and volume-weighted contin-
uous fields from a discrete set of sampled field values. The method has been
developed by Schaap and van de Weygaert [161] and forms an elaboration
of the velocity interpolation scheme introduced by Berhardeau and van de
Weygaert [16]. It is based upon the use of the Voronoi and Delaunay tessella-
tions of a given spatial point distribution to form the basis of a natural, fully
self-adaptive filter in which the Delaunay tessellations are used as multidi-
mensional interpolation intervals. An example is the void density and velocity
field in Fig. 24.

The primary ingredient of the DTFE method is the Delaunay tessellation
of the particle distribution. The Delaunay tessellation of a point set is the
uniquely defined and volume-covering tessellation of mutually disjunct De-
launay tetrahedra (triangles in 2D). Each is defined by the set of four points
whose circumscribing sphere does not contain any of the other points in the
generating set [51]. The Delaunay tessellation and the Voronoi tessellation
of the point set are each others dual. The Voronoi tessellation is the divi-
sion of space into mutually disjunct polyhedra, each polyhedron consisting of
the part of space closer to the defining point than any of the other points
[123, 191].

DTFE exploits three properties of Voronoi and Delaunay tessellations [160,
188]. The tessellations are very sensitive to the local point density. DTFE uses
this to define a local estimate of the density on the basis of the inverse of the
volume of the tessellation cells. Equally important is their sensitivity to the
local geometry of the point distribution. This allows them to trace anisotropic
features such as encountered in the cosmic web. Finally, DTFE exploits the
adaptive and minimum triangulation properties of Delaunay tessellations in
using them as adaptive spatial interpolation intervals for irregular point dis-
tributions. In this way it is the first order version of the Natural Neighbour
method [27, 169, 174, 184].

Within the cosmological context a major – and crucial – characteristic
of a processed DTFE density field is that it is capable of delineating three
fundamental characteristics of the spatial structure of the megaparsec cosmic
matter distribution. It outlines the full hierarchy of substructures present in
the sampling point distribution, relating to the standard view of structure in
the Universe having arisen through the gradual hierarchical buildup of matter
concentrations. DTFE also reproduces any anisotropic patterns in the density
distribution without diluting their intrinsic geometrical properties. This is
particularly important when analyzing the the prominent filamentary and
planar features marking the Cosmic Web. A third important aspect of DTFE
is that it outlines the presence and shape of voidlike regions. Because of the
interpolation definition of the DTFE field reconstruction voids are rendered
as regions of slowly varying and moderately low density values.
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Multiscale Morphology Filter

Recently a variety of methods have been developed towards a complete mor-
phological analysis of the cosmic web in the cosmic matter distribution. Per-
haps the most rigorous program, with a particular emphasis on the description
and analysis of filaments, is that of the skeleton analysis of density fields by
Novikov, Colombi and Doré [122] (2-D) and Sousbie et al. [172] (3-D) (see
Sect. 3.2). Another strategy has been followed by Hahn et al. [76]. They iden-
tify clusters, filaments, walls and voids in the matter distribution on the basis
of the tidal field tensor ∂2φ/∂xi∂xj , determined from the density distribution
filtered on a scale of ≈ 5 h−1 Mpc. Here we shortly focus on the Multiscale
Moprhology Filter (MMF), introduced by Aragón-Calvo et al. [5]. The MMF
dissects the cosmic web on the basis of the multiscale analysis of the Hessian
of the density field.

Figure 18 contains a schematic overview of the Multiscale Morphology
Filter (MMF) to isolate and extract elongated filaments (dark grey), sheet-
like walls (light grey) and clusters (black dots) in the weblike pattern of a
cosmological N-body simulation Aragón-Calvo et al. [6]. The first stage is
the translation of a discrete particle distribution (top lefthand frame) into a
DTFE density field (top centre). This guarantees a morphologically unbiased
and optimized density field retaining all features visible in a discrete galaxy

Fig. 18. Scheme of the Multiscale Morphology Filter for extracting weblike mor-
phologies. See text for explanation. From van de Weygaert and Schaap [188]



Observations and Morphology of the Cosmic Web 441

or particle distribution. The DTFE field is filtered over a range of scales (top
righthand stack of filtered fields). By means of morphology filter operations
defined on the basis of the Hessian of the filtered density fields the MMF
successively selects the regions which have a bloblike (cluster) morphology, a
filamentary morphology and a planar morphology, at the scale at which the
morphological signal is optimal. This produces a feature map (bottom left-
hand). By means of a percolation criterion the physically significant filaments
are selected (bottom centre). Following a sequence of blob, filament and wall
filtering finally produces a map of the different morphological features in the
particle distribution (bottom lefthand). The 3-D isodensity contours in the
bottom lefthand frame depict the most pronounced features (also see Fig. 17).

MMF and the Cosmic Web

Two noteworthy recent results obtained by MMF concerns the inventory of
mass and volume content of the Cosmic Web [5], shown in Fig. 19. The re-
sults relate to the present-day epoch in a ΛCDM N-body simulation. Clusters
occupy the smallest volume fraction in the cosmic web, accounting for only
0.4%. They do, however, represent a major share of the mass (28%), making
them by far the densest components of the Cosmic Web. Most mass (39%) in
the Universe resides in filaments, tracing out almost 10% of the total volume.
Sheet contain only a small fraction of the mass, ≈ 5.5% and occupy a rela-
tively small volume (4.9%), making them the most tenuous structures in the
Cosmic Web.

Also highly relevant is the issue of the connection between filaments and
clusters. The number of filaments emanating from a cluster turns out to be
a strong function of the cluster mass (see Fig. 20). More massive clusters
are connected to considerably more filaments: MMF analysis indicates that

Fig. 19. Pie diagram showing an inventory of the Cosmic Web in terms of volume
(left) and mass (right). Image courtesy M. Aragón-Calvo, also see Aragón-Calvo [5]
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Fig. 20. Mean number of filaments as a function of the mass of the clusters to
which they are connected (solid line). Dotted line: 1σ dispersion. Image courtesy M.
Aragón-Calvo, also see Aragón-Calvo [5]

clusters with a mass M ∼ 1014 M� have on average 2 filaments connected
to them, clusters with a mass M ∼ 1015 M� more than five filaments. Other
studies have found a similar relation based on intracluster filaments found in
N-body simulations [35] and visually identified filament-cluster connections
from the 2dF galaxy redshift survey [133].

4 Voids

A manifest and prominent morphological aspect of the Megaparsec matter
and galaxy distribution is the marked and dominant presence of large under-
dense regions, the Voids. A proper and full understanding of the formation
and dynamics of the Cosmic Web is not possible without understanding the
structure and evolution of voids. With respect to their role in the structure
and buildup of the Cosmic Web we need to address three crucial aspects of
void evolution:

• Formation and Evolution of Voids
Voids form in and around density troughs in the primordial density field.
As a result of the corresponding weaker internal gravity matter matter
streams out of the interior of voids while the void as a whole will expand
with respect to the background Universe.

• Void Dynamics and Void Outflow
As a result of their underdensity voids represent a region of weaker gravity.
This results in an effective repulsive gravitational influence. Various galaxy
redshift surveys and studies of galaxy peculiar velocities have indeed un-
covered this imprint in the cosmic velocity flow in the Local Universe (see
Sect. 2.3).
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• Void Hierarchy and Substructure
Not only galaxies, galaxy halos and clusters of galaxies get assembled in
a hierarchical fashion. Also the buildup of voids proceeds via a complex
and intricate process of hierarchical evolution. Insight into this evolution
is essential for understanding the overall geometry and structure of the
Cosmic Web. The remnants of the hierarchical void evolution can still
be seen when studying the observed spatial galaxy distribution or when
analyzing N-body simulations of structure formation. It should also form
the basis for the study of properties of the void galaxy population and the
dependence on environment.

In the subsequent sections we will address each of these issues in some detail.

4.1 Formation and Evolution of Voids

Voids emerge out of the density troughs in the primordial Gaussian field of
density fluctuations. Early theoretical models of void formation concentrated
on the evolution of isolated voids [18, 20, 79, 84]. Initially underdense regions
expand faster than the Hubble flow, and thus expand with respect to the
background Universe. If they are not embedded within overdense regions, such
regions eventually form voids which are surrounded by dense void walls. At
any cosmic epoch the voids that dominate the spatial matter distribution are a
manifestation of the cosmic structure formation process reaching a non-linear
stage of evolution.

In a void-based description of the evolution of the cosmic matter distri-
bution, voids mark the transition scale at which density perturbations have
decoupled from the Hubble flow and contracted into recognizable structural
features. On the basis of theoretical models of void formation one might infer
that voids may act as the key organizing element for arranging matter con-
centrations into an all-pervasive cosmic network [84, 145, 168, 186]. As voids
expand, matter is squeezed in between them, and sheets and filaments form
the void boundaries. This view is supported by numerical studies and com-
puter simulations of the gravitational evolution of voids in more complex and
realistic configurations [36, 53, 68, 111, 125, 145, 187]. A marked example of
the evolution of a typical large and deep void in a ΛCDM scenarios is given
by the time sequence of six frames in Fig. 21.

Void Characteristics: an Inventory

The formation and evolution of voids involves a range of interesting and intri-
cate processes and aspects. A listing of a dozen characteristic properties may
elucidate this.

• Voids expand.
The underdensity of a void corresponds to a weaker interior gravita-
tional field. With respect to the global universe this leads to an effective
(peculiar) gravity inducing a general flow out of the void region.
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Fig. 21. Simulation of evolving void (LCDM scenario). Image courtesy of
Erwin Platen

• Voids empty.
As matter streams out of the void, the density within the void decreases.
Isolated voids will asymptotically evolve towards an underdensity δ = −1,
pure emptiness.

• Voids form ridges.
As the density within voids gradually increases outward, the correspond-
ing peculiar (outward) gravitational acceleration decreases outward: void
matter in the centre moves outward faster than void matter towards the
boundary. As a result matter accumulates in ridges surrounding the void
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(see Fig. 22). The steepness of the resulting density profile depends on the
protovoid depression [126].

• “Bucket” density profile
Voids assume a “bucket” shape – marked by a uniform interior density
depression and a steep outer boundary – as a result of the fast outflow
from the “flat” centre in a primordial underdensity. While their matter
content accumulates near and around steep density ridges, the interior in-
volves into a region resembling a low-density homogeneous FRW Universe
(see Fig. 22).

• Superhubble void expansion
Related to the uniform density interior of mature voids the corresponding
peculiar velocity field is that of a “Superhubble” flow [84]: the interior
flowfield of voids is marked by a uniform velocity divergence [160]. For
a spherically symmetric void model it is rather straightforward to ana-
lytically infer that this is the expected natural tendency for voids (see
Fig. 22). It is a manifestation of Birkhoff’s theorem, according to which a
void region can be described as an isolated lower Ω FRW universe [68, 187].
An analysis of N-body simulations by means of the DTFE technique has
shown this also to be the case for the more complex situation of hierar-
chical structure formation (see Sect. 4.3).

Fig. 22. Spherical model for the evolution of voids. Left: a pure (uncompensated)
tophat void evolving up to the epoch of shell-crossing. Initial (linearly extrapolated)

density deficit was Δlin,0 = −10.0, initial (comoving) radius R̃i,0 = 5.0 h−1 Mpc.
Right: a void with an angular averaged SCDM profile. Initial density deficit and
characteristic radius are same as for the tophat void (left). The tendency of this
void to evolve into a tophat configuration by the time of shell crossing is clear.
Shell-crossing, and the formation of a ridge, happens only if the initial profile is
sufficiently steep
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• Characteristic void and shellcrossing
Overdense spherical peaks have a characteristic and time of collapse, coin-
cident with a linearly extrapolated density δc = 1.69. Voids have a similar
globally valid characteristic epoch of evolution, that of shellcrossing. This
happens when interior shells of matter take over initially exterior shells. It
happens when a primordial density depression attains a linearly extrap-
olated underdensity δv = −2.81 (for EdS universe). A perfectly spherical
“bucket” void will have expanded by a factor of 1.72 at shellcrossing, and
therefore have evolved into an underdensity of ∼ 20% of the global cos-
mological density, ie. δ = −0.8.

• Identity observed voids
Bertschinger’s thesis work demonstrated that once voids have passed the
stage of shellcrossing they enter a phase of self-similar expansion [18].
Subsequently, their expansion will slow down with respect to the earlier
linear expansion. This impelled Blumenthal et al. [20] to identify voids in
the present-day galaxy distribution with voids that have just reached the
stage of shell-crossing.

• Void shapes: spherical tendencies
Icke [84] pointed out that any (isolated) aspherical underdensity will be-
come more spherical as it expands. The effective gravitational acceleration
is stronger along the short axis than along the longer axes. For overden-
sities this results in a stronger inward acceleration and infall, producing
increasingly flattened and elongated features. By contrast, for voids this
translates into a larger outward acceleration along the shortest axis so
that asphericities will tend to diminish. For the interior of voids this ten-
dency has been confirmed by N-body simulations [187]. In reality, voids
will never reach sphericity as a result of large scale dynamical and envi-
ronmental factors [136].

• Nonlinearity of voids
While by definition voids correspond to density perturbations of at most
unity, |δv| ≤ 1, mature voids in the nonlinear matter distribution do rep-
resent highly nonlinear features. This may be best understood within the
context of Lagrangian perturbation theory [157]. Overdense fluctuations
may be described as a converging series of higher order perturbations, the
equivalent perturbation series is less well behaved for voids. The succes-
sive higher order terms of both density deficit and corresponding velocity
divergence alternate between negative and positive (see Fig. 23).

• Dilution of void substructure
In hierarchical scenarios of structure formation void regions contain sub-
stantial amounts of infrastructure (see Sect. 4.4). The low-density envi-
ronment of voids slows the growth of structure (for a thorough analytical
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Fig. 23. Void nonlinearity in Lagrangian perturbation theory, from Sahni and
Shandarin [157]. Lefthand Frame: density contrast δAPP in Lagrangian pertur-
bation series L(n) plotted against the exact tophat solution δEX for underdense re-
gions (lower left) and overdense regions (upper right). Whereas the accuracy of
L(n) increases with n when describing the behaviour of overdense regions, L(n) wiht
N > 1 do not fare as well when applied to underdense regions. Although for voids
L(n) with n = 2, 3 are initially more accurate than L(1) (Zel’dovich approxima-
tion), their accuracy becomes poorer with time. Moreover, L(2) shows pathological
behaviour at late times when δEX < −0.7. Righthand frame: The dimensionless ve-
locity divergence field θAPP in Lagrangian perturbation series L(n) is shown plotted
against the exact solution θEX, for overdense regions (lower left) and underdense
regions (upper right). l(n) with n = 2, 3 give better results than l(a) for overdense
but not for underdense regions. From Sahni and Shandarin [157]. Image courtesy of
Sergei Shandarin

treatment see Goldberg and Vogeley [68]). The net result is a diluted and
diminished infrastructure which remains visible, at ever decreasing den-
sity contrast, as cinders of the earlier phases of the void hierarchy in which
the substructure stood out more prominent (see Sect. 4.8).

• Collapse of voids
Instead of expanding, voids embedded in a larger scale environment of suf-
ficient overdensity, or surrounded by structures effecting a strong enough
tidal force field, may tend to collapse. This process of void collapse is espe-
cially relevant for small (sub)voids near the boundaries of large dominating
voids. The process is of crucial importance in the hierarchical evolution
of voids (see Sect. 4.8).

4.2 Void Identity and Maturity

One question of relevance is that of the identity of the observed voids. In
other words, what defines a mature void? A reasonable answer may be found
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on the basis of the spherical model. This teaches us that voids may be assigned
a characteristic dynamical time, corresponding to a threshold of the linearly
extrapolated primordial density field. A reasonable suggestion is that of a void
reaching maturity at the moment of shell-crossing, ie. the stage at which the

Fig. 24. The density and velocity field around a void in the GIF LCDM simulation.
The top righthand panel shows the N-body simulation particle distribution within
a slice through the simulation box, centered on the void. The top righthand panel
shows the grayscale map of the DTFE density field reconstruction in and around the
void, the corresponding velocity vector plot is shown in the bottom lefthand panel.
Notice the detailed view of the velocity field: within the almost spherical global
outflow of the void features can be recognized that can be identified with the diluted
substructure within the void. Along the solid line in these panels we determined the
linear DTFE density and velocity profile (bottom righthand frame). We can
recognize the global “bucket” shaped density profile of the void, be it marked by
substantial density enhancements. The velocity field reflects the density profile in
detail, dominated by a global super-Hubble outflow. From Schaap [160]
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inner shells of a void do overtake the outer shells as a result of their larger
peculiar acceleration. Bertschinger [18] pointed out that a void would assume a
self-similar expansion and propagate at a slower rate through the surrounding
medium Bertschinger [18]. On the basis of this observation, Blumenthal et
al. [20] suggested that the voids observed in galaxy redshift surveys, or in
N-body simulations, should be identified with such shell-crossing voids.

The void threshold that corresponds to shell-crossing of a spherical tophat
void, δv = −2.81 (for a Ωm = 1 Einstein-de Sitter Universe, and for a growing-
mode perturbation). Once the (fictitious) linear growth of a density trough
in the primordial density field has reached the void barrier the depression
will have evolved into a genuine void. Given the primordial density field δ(x),
linearly interpolated to the present epoch, at any one cosmic redshift z one
can identify the voids that have evolved beyond the shell-crossing phase and
emerged as mature voids,

Δ(x) < δssc(z,Ωm,ΩΛ) ≈ δv
D(z)

, (1)

where the index ssc refers to “spherical shell crossing”.

4.3 A Void in LCDM

Soon after their discovery, various studies pointed out their essential role in
the organization of the cosmic matter distribution (e.g. icke [84], Regős and
Geller [145]). Their effective repulsive influence over their surroundings has
been recognized in various galaxy surveys in the Local Universe (see Sect. 2.3).

Here we address the void’s dynamical influence by means of a case study
of the structure and outflow from a void selected from a ΛCDM GIF N-body
simulation Kauffmann et al. [94]. Figure 25 shows a typical void-like region
in a ΛCDM Universe. It concerns a 2563 particles GIF N -body simulation,
encompassing a ΛCDM (Ωm = 0.3,ΩΛ = 0.7, H0 = 70 km/s/Mpc) density
field within a (periodic) cubic box with length 141 h−1 Mpc and produced by
means of an adaptive P3M N -body code.

The top left frame shows the particle distribution in and around the void
within this 42.5 h−1 Mpc wide and 1 h−1 Mpc thick slice through the simula-
tion box. In the same figure we include panels of the density and velocity field
in the void, determined by means of a DTFE reconstruction (see Schaap [160]
van de Weygaert and Schaap [188]). Both form a nice illustration of the capac-
ity of the tessellation-based DTFE interpolation and reconstruction technique
to translate the inhomogeneous particle distribution into highly resolved con-
tinuous and volume-filling fields and even follow the density field as well as
velocity flow throughout diluted void regions.

Void Infrastructure

The void region appears as a slowly varying region of low density (top right-
hand frame). Notice the clear distinction between the empty(dark) interior
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Fig. 25. The imprint of voids on the cosmic velocity field. The velocity divergence
pdf for a matter-dominated Ω = 0.4 and a Ω = 1.0 universe, determined from a
CDM N-body simulation by means of the DTFE technique. The pdf has a sharp
high-value edge, defined by the outflow from voids. Lefthand frame: Ω = 0.4, with
superimposed (dashed) the pdf for a Ω = 1.0 Universe. Righthand frame: Ω = 1.0.
From Bernardeau et al. [17]

regions of the void and its edges. In the interior of the void several smaller
subvoids can be distinguished, with boundaries consisting of low density fila-
mentary or planar structures.

The general characteristics of the expanding void are most evident when
following the density and velocity profile along a one-dimensional section
through the void. The bottom-left frame of Fig. 24 shows these profiles for the
linear section along the solid line indicated in the other three frames. The first
impression is that of the bucket-like shape of the void, be it interspersed by
a rather pronounced density enhancement near its centre. This profile shape
does confirm to the general trend of low-density regions to develop a near
uniform interior density surrounded by sharply defined boundaries. Because
initially emptier inner regions expand faster than the denser outer layers the
matter distribution gets evened out while the inner layers catch up with the
outer ones.

Void Velocity Field

The flow in and around the void is dominated by the outflow of matter from
the void, culminating into the void’s own expansion near the outer edge.
The comparison with the top two frames demonstrates the strong relation
with features in the particle distribution and the density field. Not only is
it slightly elongated along the direction of the void’s shape, but it is also
sensitive to some prominent internal features of the void. Towards the “SE”
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direction the flow appears to slow down near a ridge, near the centre the
DTFE reconstruction identifies two expansion centres.

The void velocity field profile is intimately coupled to that of its density
field. The linear velocity increase is a manifestation of its general expansion.
The near constant velocity divergence within the void conforms to the super-
Hubble flow expected for the near uniform interior density distribution. Be-
cause voids are emptier than the rest of the universe they will expand faster
than the rest of the universe with a net velocity divergence equal to

θ =
∇ · v
H

= 3(α− 1) , (2)

α = Hvoid/H , (3)

where α is defined to be the ratio of the super-Hubble expansion rate of the
void and the Hubble expansion of the universe.

Expanding Voids and the Cosmos

Evidently, the highest expansion ratio is that for voids which are completely
empty, ie. Δvoid = −1. The expansion ratio α for such voids may be inferred
from Birkhoff’s theorem, treating these voids as empty FRW universes whose
expansion time is equal to the cosmic time. For a matter-dominated Universe
with zero cosmological constant, the maximum expansion rate that a void
may achieve is given by

θmax = 1.5 Ω0.6
m , (4)

with Ωm the cosmological mass density parameter. For empty voids in a Uni-
verse with a cosmological constant a similar expression holds, be it that the
value of α will have to be numerically calculated from the corresponding equa-
tion. In general the dependence on Λ is only weak. Generic voids will not be
entirely empty, their density deficit |Δvoid| ≈ 0.8−0.9 (cf. eg. the linear den-
sity profile in Fig. 25). The expansion rate θvoid for such a void follows from
numerical evaluation of the expression

θvoid =
3
2

Ω0.6
m − Ω0.6

m,void

1 + 1
2Ω0.6

m,void

; Ωm,void =
Ωm(Δvoid + 1)

(1 + 1
3θ)

2
(5)

in which Ωm,void is the effective cosmic density parameter inside the void.
When assessing the statistics of the velocity field divergence, using appro-

priate tools, one may indeed find a sharp positive divergence cutoff marking
the maximum expansion rate of void regions. On the basis of their tessellation
based technique, an early velocity field oriented version of DTFE, Bernardeau
and van de Weygaert [16] and Bernardeau et al. [17] demonstrated that po-
tentially one may indeed infer information on Ωm,0 from the expansion of
voids.
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4.4 Void Sociology

Computer simulations of the gravitational evolution of voids in realistic cos-
mological environments do show a considerably more complex situation than
that described by idealized spherical or ellipsoidal models (see Martel and
Wassermann [111], Regős and Geller [145], Dubinski et al. [53], van de
Weygaert and van Kampen [187], Goldberg and Vogeley [68], Colberg et al.
[36], Padilla et al. [125]). In recent years the huge increase in computational
resources has enabled N-body simulations to resolve in detail the intricate
substructure of voids within the context of hierarchical cosmological structure
formation scenarios [7, 36, 68, 71, 78, 116, 125]. They confirm the theoretical
expectation of voids having a rich substructure as a result of their hierarchical
buildup (see e.g. Fig. 21).

Sheth and van de Weygaert [168] treated the emergence and evolution of
voids within the context of hierarchical gravitational scenarios. It leads to a
considerably modified view of the evolution of voids. The role of substructure
within their interior and the interaction with their surroundings turn out to
be essential aspects of the hierarchical evolution of the void population in the
Universe. An important guideline are the heuristic void model simulations by
Dubinski et al. [53], and the theoretical void study by Sahni et al. [156] within
the context of a Lagrangian adhesion model approach by Sahni et al. [156].
Sheth and van de Weygaert [168] showed that the hierarchical development
of voids, akin to the evolution of overdense halos, may be described by an
excursion set formulation [22, 142, 167]. In some sense voids have a consid-
erably more complex evolutionary path than overdense halos. This prodded
the development of a two-barrier excursion set formalism (see Sect. 3.7 in
accompanying lecture notes on the theory of the Cosmic Web). The two bar-
riers refer to two processes that dictate the evolution of voids: their merging
into ever larger voids as well as the collapse and disappearance of small ones
embedded in overdense regions.

Void Merging

First, consider a small region which was less dense than the critical δv. It may
be that this region is embedded in a significantly larger underdense region
which is also less dense than the critical density. Many small primordial den-
sity troughs may exist within the larger void region. Once small voids located
within the larger embedding underdensity have emerged as true voids at some
earlier epoch, their expansion tends to slow down. Subsequently, they merge
and get absorbed into the larger void emerging from the embedding under-
density as it reaches its shell-crossing phase. Therefore, we should identify
the larger region as a large void today, while the smaller subvoids should not
anymore be counted as such (see Fig. 26 bottom row).
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Void Collapse

A second void process is responsible for the radical dissimilarity between void
and halo populations. If a small scale minimum is embedded in a sufficiently
high large scale density maximum, then the collapse of the larger surrounding
region will eventually squeeze the underdense region it surrounds: the small-
scale void will vanish when the region around it has collapsed completely.
Alternatively, though usually coupled, they may collapse as a result of the tidal
force field in which they find themselves. If the void within the contracting
overdensity has been squeezed to vanishingly small size it should no longer be
counted as a void (see Fig. 26 bottom row).

The collapse of small voids is an important aspect of the symmetry
breaking between underdensities and overdensities. In the primorial Uni-
verse, Gaussian primordial conditions involve a perfect symmetry between

Fig. 26. The two modes of void evolution: void merging (top row) and void collapse
(bottom row). Top: three timesteps of evolving void structure in a 1283 particle
N-body simulation of structure formation in an SCDM model (aexp = 0.1, 0.3, 0.5).
The sequence shows the gradual development of a large void of diameter ≈ 25 h−1

Mpc as the complex pattern of smaller voids and structures which had emerged
within it at an earlier time, merge with one another. It illustrates the void-in-void
process of the evolving void hierarchy. Bottom: a choice of three collapsing voids in
a constrained N-body simulation, each embedded within an environment of different
tidal shear strength. The arrows indicate the velocity vectors, showing the infall of
outer regions onto the void region. As a result the voids will be crushed as the
surrounding matter rains down on them
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under- and overdense. Any inspection of a galaxy redshift map or an N-body
simulation shows that there is a marked difference between matter clumps
and voids. While the number density of halos is dominated by small objects,
void collapse is responsible for the lack of small voids.

4.5 Void Excursions

The excursion set formalism allows an elegant formulation and evaluation
of the complex evolution of voids outlined above in terms of a two-barrier
excursion set formalism. The merging and collapse barriers have been indi-
cated by horizontal bars in the Brownian random walk diagram of Fig. 27.
In the formalism developed by Sheth and van de Weygaert [168] the matur-
ing/merging threshold is set to a fixed threshold value, independent of scale:
the shell-crossing value δv = −2.81 of spherical voids. The void collapse of an
underdensity embedded within a contracting overdensity is set by the collapse
barrier δc (for halos).

Void-in-Void and Void-in-Cloud

Since many small voids may coexist within one larger void, we must not
count all of the smaller voids as distinct objects, lest we overestimate the

Fig. 27. Two-barrier excursion set formalism for the two void processes: void merg-
ing (red) and void collapse (green). Random walk exhibited by the average over-
density δ centred on a randomly chosen position in a Gaussian random field, as a
function of smoothing scale, parametrized by SM (large volume are on the left, small
volumes on the right). Dashed horizontal lines indicate the collapse barrier δc and
the void shell-crossing barrier δv
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number of small voids and the total volume fraction in voids. This is called
the void-in-void problem. In this case small voids from an early epoch merge
with one another to form a larger void at a later epoch. It is analogous to
the well-known cloud-in-cloud problem associated with the number density
of initially overdense peaks. To account for the impact of voids disappearing
when embedded in collapsing regions, we must also deal with the void-in-cloud
problem. Also see Fig. 9 in van de Weygaert and Bond (2005).

By contrast, the evolution of overdensities is governed only by the cloud-
in-cloud process; the cloud-in-void process is much less important, because
clouds which condense in a large scale void are not torn apart as their parent
void expands around them. This asymmetry between how the surrounding
environment affects halo and void formation is incorporated into the excursion
set approach by using one barrier to model halo formation and a second barrier
to model void formation (Fig. 9 in van de Weygaert and Bond (2005)). Only
the first barrier matters for halo formation, but both barriers play a role in
determining the expected abundance of voids.

Brownian Void Walks

Figure 27 depicts two different random walks, each illustrative examples of the
void evolution processes. The red Brownian random walk relates to the void-
in-void trajectory of void formation through the merging of voids. The green
Brownian random walk depicts the fateful events unfolding for a collapsing
void, a void-in-halo trajectory. The void-in-void random walk looks very much
the inverse of that for the cloud-in-cloud process associated with halo mergers.
The associated random walk shows that the present-day void V1 contains more
mass (S ∼ 1.6) than the smaller void V2 (S ∼ 3.2) which merged into V 1.
The red random walk concerns a location which at early times was found
within a small void V 2. This void, however, is embedded on a mass larger
mass scale within an overdense halo H1. Once this entity collapses into a
massive virialized halo, V2 will have disappeared.

If a walk first crosses δc and then crosses δv on a smaller scale, then the
smaller void is contained within a larger collapsed region. Since the larger
region has collapsed, the smaller void within it no longer exists, so it should
not be counted. The only bona-fide voids are those associated with walks which
cross δv without first crossing δc. The problem of estimating the fraction of
mass in voids reduces to estimating the fraction of random walks which first
crossed δv at S, and which did not cross δc at any S′ < S: the description of
the void hierarchy requires solution of a two-barrier problem.

4.6 Void Spectrum

The analytical evaluation of the two-barrier random walk problem leads di-
rectly to a prediction of the distribution function nv(M) for voids on a mass
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scale M . With respect to the linear extrapolated density field the matured void
on a mass scale m corresponds to a fractional relative underdensity

√
νv(M),

νv(M) ≡ |δv|
σ(M)

, (6)

with the dependence on the mass scale M entering via the rms density fluctu-
ation on that scale, σ(M). According to the Sheth and van de Weygaert [168]
the resulting void mass spectrum may be approximated by

nv(M) dM ≈
(7)√

2
π

ρu

M2
νv(M) exp

(
−νv(M)2

2

) ∣∣∣∣d lnσ(M)
d lnM

∣∣∣∣ exp
{
−|δv|

δc

D2

4ν2
v

− 2
D4

ν4
v

}
.

which for a pure power-law power spectrum yields

nv(M) dM ≈
√

1
2π

(
1 +

n

3

) ρu

M2

(
M

Mv,∗

)(3+n)/6

exp

{
−
(

M

Mv,∗

)(3+n)/3
}

(8)

× exp

{
−D2

2

(
|δv|
4δc

+ D2

(
M

Mv,∗

)−(3+n)/3
) (

M

Mv,∗

)−(3+n)/3
}

.

The quantity D is the “void-and-cloud parameter”,

D ≡ |δv|
(δc + |δv|) . (9)

It parameterizes the impact of halo evolution on the evolving population of
voids: the likelihood of smaller voids being crushed through the void-in-cloud
process decreases as the relative value of the collapse barrier δc with respect
to the void barrier δv becomes larger.

Along with the derived void distribution a variety of related interesting
observations may be made. One aspect concerns the fraction of mass contained
in voids on mass scale M,

f(M) =
M nv(M)

ρu
. (10)

The resulting distribution is also peaked. The top lefthand frame of Fig. 28
shows that most of the void mass is indeed to be found in voids of characteristic
mass Mv,∗. At any given time the mass fraction in voids is approximately
thirty percent of the mass in the Universe.
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Fig. 28. Distribution of void radii predicted on the basis of (9), in an Einstein
de-Sitter model with P (k) ∝ k−1.5, normalized to σ8 = 0.9 at z = 0. Top left panel
shows the mass fraction in voids of radius r. Bottom left panel shows the number
density of voids of radius r. Note that the void-size distribution is well peaked about
a characteristic size provided one accounts for the void-in-cloud process. Top right
panel shows the cumulative distribution of the void volume fraction. Dashed and
solid curves in the top panels and bottom left panel show the two natural choices
for the importance of the void-in-cloud process discussed in the text: δc = 1.06 and
1.686, with δv = −2.81. Dotted curve shows the result of ignoring the void-in-cloud
process entirely. Clearly, the number of small voids decreases as the ratio of δc/|δv|
decreases. Bottom right panel shows the evolution of the cumulative void volume
fraction distribution. The three curves in this panel are for δc = 1.686(1 + z), where
z = 0 (solid), 0.5 (dotted) and 1 (dashed)

Characteristic Void Size

Expression (9) shows clearly that n(M) cuts-off sharply at both small and
large values of νv. This becomes clear when inspecting The number density
nv(R) of voids of radius R3 in Fig. 28 (bottom lefthand frame). It shows
that the distribution of void masses is reasonably well peaked about ν ≈ 1,
corresponding to a characteristic mass scale of order σ0(M) ≈ |δv|.

The above implies that at any one cosmic epoch there is a characteristic
void size which increases with time: the larger voids present at late time
formed from mergers of smaller voids which formed at earlier times. For pure

3 The conversion of the void mass scale to equivalent void radius R is done by
assuming the simplest approximation, that of the spherical tophat model. Ac-
cording to this model a void has expanded by a factor of 1.7 by the time it has
mature, so that Vv = (M/ρu) ∗ 1.73.
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power-law power spectra this means that this self-similar evolution of the void
population centers around the evolving void mass Mv,∗:

Mv,∗(t) ∝ D(t)6/(3+n) Mv,∗,o , (11)

in which the present-day characteristic void mass, inversely proportional to
|δv|, is

Mv,∗,o =
(

2A
δ2
v

)3/(3+n)

. (12)

Self-similar Void Evolution

In an Einstein de-Sitter universe, δc, δv and σ(m) all have the same time
dependence, so (9) evolves self-similarly, parameterized by the characteristic
“void mass” Mv,∗. Also for more general world-models the approximation of
self-similar void evolution should be quite accurate as the time dependences
are only slightly different.

4.7 Void Evolution

The population of large voids is insensitive to the void-in-cloud process. The
large mass cutoff of the void spectrum is similar to the ones for clusters and
reflects the Gaussian nature of the fluctuation field from which the objects
have condensed. The gradual merging of voids into ever larger ones is em-
bodied in the self-similar shift of the peak of the void spectrum, ie. of Mv,∗.
The abundance of voids which larger than the typical initial comoving sizes
of clusters is therefore reasonably described by peaks theory [10, 168].

While the two-barrier excursion set formalism offers an attractive theo-
retical explanation for the distinct asymmetry between clumps and voids and
for the peaked void size distribution, we need to identify where the disap-
pearing small-scale voids are to be found in a genuine evolving cosmic matter
distribution. Using the GIF N-body simulations of various CDM scenarios,
Platen [134] has managed to trace various specimen of this unfortunate void
population. Using the new Watershed Void Finder technique [135] identified
small-scale voids at high redshift (z = 3) and subsequently followed their
evolution. Figure 29 shows the void distribution in and around a large cen-
tral underdensity at four cosmic epochs, z = 3.0, 2.0, 1.5 and 0.5. The fate of
the subvoids within the large present-day void is clearly visible: the interior
ones tend to merge with surrounding peers while the ones near the boundary
get squeezed out of existence. Close inspection shows that the small voids
are not collapsing isotropically. Instead they tend to get sheared by their
surroundings.

This image of void formation in the dark matter distribution has been
elaborated by Furlanetto and Piran [64] to describe the implications for voids
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Fig. 29. Evolving Void Hierarchy: the structure in and around a large central void
in a GIF ΛCDM simulation. At z = 3 the watershed WVF voidfinder [135] has
been applied to trace the outline of voids in the matter distribution. Particles at the
surrounding ridges (boundaries) are subsequently followed. The four frames depict
the resulting particle distribution in a 5 h−1 Mpc thick and ≈ 60 h−1 Mpc wide slice,
at 4 successive time intervals: z = 3.0, 2.0, 1.5 and 0.5. Clearly visible is the fate of
subvoids within the large present-day void: either they merge into the background
or they get squeezed out of existence near the boundary. From Platen et al. [136].
Courtesy GIF simulation: J. Colberg and Virgo consortium

in the galaxy distribution while it forms the starting point for various ongoing
investigations.

The demise of small voids near the boundaries of large voids, touching the
surrounding filaments and sheets, is a clear indication for the importance of
tidal influences on the developing subvoid. Tidal stresses induced by the large
scale vicinity will be of major importance for their final fate. One may argue
that tidal influences are more important for voids than they are for halos.
Because their underdensity is naturally limited (δ ≥ −1) and because their
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size is expanding the environment retains a dominant dynamical influence, in
particular over the outer region of the voids. The accompanying force field will
in general be anisotropic and if strong enough enforce a shearing collapse. It is
entirely in line with the recent observation by Park and Lee [127] and Platen,
van de Weygaert and Jones [136], that the shape of voids is significantly
affected by the tidal influence of the surrounding matter distribution.

4.8 Soapsud of Voids

An important aspect of the implied void population is that it is approximately
space-filling. It underlines the adagio that the large scale distribution of mat-
ter may be compared to a soapsud of expanding bubbles. This follows from
evaluation of the cumulative integral

fV (M) ≡
∫ ∞

M

(1.7)3
M ′ nv(M ′)

ρu
dM ′ . (13)

where the factor 1.7 is an estimate of the excess expansion of the void based
upon the spherical model for void evolution (see footnote). The resulting (cur-
rent) cumulative void volume distribution is shown in the top righthand panel
of Fig. 28. For a finite value of void radius R the whole of space indeed appears
to be occupied by voids. Even more impressive is the corresponding self-similar
evolution of the culumative void volume distribution fV (M, t). The bottom
righthand frame of Fig. 28 shows the gradual shift of the cumulative volume
distribution towards larger voids. The correct image appears to be that of
a gradually unfolding bubbly universe in which the average size of the voids
grows as small voids merge into ever larger ones.

5 Conclusion: Morphology of the Cosmic Web

The Megaparsec scale galaxy distribution defines one of the most intriguing
spatial patterns in nature, the Cosmic Web. In these notes we have looked
into the many diverse aspects of the available observational information. For
a considerable period the spatial analysis of weblike structures has been based
on rather ill-defined heuristic concepts, difficult to interpret within the context
of existing theories. We have provided a review of the recent activity towards
this direction. A set of techniques has opened the path towards a meaningful
quantitative analysis. Morphologically, the most distinct elements of the Cos-
mic Web are filaments and voids. Filaments have figured prominently in the
accompanying theoretical treatise van de Weygaert and Bond, 2005 on the
formation of the web. In these lecture notes we have put special emphasis on
the voids in cosmic matter and galaxy distribution.
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